省选数论总结

前言

此篇仅供个人学习总结使用

常见符号及其意义

  1. a ∣ b a\mid b ab表示 a a a b b b的约数
  2. ⌊ a b ⌋ \lfloor \frac{a}{b} \rfloor ba,表示 a a a除以 b b b下取整
  3. ∏ i = 1 a p i \prod \limits ^a_{i=1}p_i i=1api表示 p 1 , p 2 , . . . p n p_1,p_2,...p_n p1,p2,...pn的乘积
  4. ∑ i = 1 n a i \sum \limits ^n_{i=1}a_i i=1nai表示 a 1 , a 2 , . . a n a_1,a_2,..a_n a1,a2,..an的和
  5. a ≡ b ( m o d p ) a \equiv b \pmod p ab(modp)表示 a a a b b b p p p的结果是相同的
  6. ∑ d ∣ n \sum\limits_{d\mid n} dn表示枚举 n n n的所有因子 d d d
  7. f × g ( x ) f \times g(x) f×g(x)表示 f f f函数与 g g g函数的狄利克雷卷积
  8. ∫ a b f ( x ) d x \int_a^b f(x)dx abf(x)dx表示定积分
  9. f ( x ) = [ x = 1 ] f(x)=[x=1] f(x)=[x=1]表示 f ( x ) f(x) f(x)只有在 x = 1 x=1 x=1的时候才为 1 1 1,其他情况为 0 0 0

数论函数

数论函数是定义域为正整数的函数,又叫做算数函数

积性函数

1. 定义

对于一个数论函数 f ( n ) f(n) f(n),如果 a a a, b b b互质, f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b),那么 f ( n ) f(n) f(n)为积性函数.特殊的,如果对于任意的 a , b a,b a,b都有 f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b),那么 f ( n ) f(n) f(n)为完全积性函数

2.常见的积性函数
  1. 欧拉函数 ϕ ( n ) \phi(n) ϕ(n)
  2. 莫比乌斯函数 μ ( n ) \mu(n) μ(n)
  3. 幂函数(完全积性) f k ( n ) = n k f_k(n)=n^k fk(n)=nk
  4. 除数函数 σ x n = ∑ d ∣ n d x \sigma_xn=\sum\limits_{d\mid n}d^x σxn=dndx,即所有因子的 x x x次幂之和.特殊的,当 x = 0 x=0 x=0的时候表示约数的个数,当 x = 1 x=1 x=1的时候表示约数之和
  5. 单位函数(完全积性) i d ( n ) = n id(n)=n id(n)=n
  6. 元函数(完全积性) e ( n ) = [ n = 1 ] e(n)=[n=1] e(n)=[n=1]
  7. 恒等函数(完全积性) I ( n ) = 1 I(n)=1 I(n)=1
3.利用线性筛预处理普通的积性函数

积性函数一般可以利用线性筛预处理,如莫比乌斯函数、欧拉函数等.
积性函数满足 f ( n ) = ∏ p i f ( p i k i ) f(n)=\prod_{p_i}f(p_i^{k_i}) f(n)=pif(piki),线性筛的时候一般分为两种情况:

  1. 新增加了一种质因子,直接用定义即可
  2. 最小质因子的幂次增加1,根据具体题目具体分析

    假设 f f f函数为积性函数 f ( n ) = ∑ d ∣ n d f(n)=\sum_{d\mid n}d f(n)=dnd ( f (f (f为因子之和函数 ) ) ),线性筛的时候有两种情况
    1.当 i i i不是 p p p的倍数,则 f ( i × p ) = f ( i ) × f ( p ) f(i\times p)=f(i)\times f(p) f(i×p)=f(i)×f(p)
    2. i i i p p p的倍数,则考虑 f ( i × p ) f(i\times p) f(i×p) f ( i ) f(i) f(i)多了什么,实际上是某个 f ( p i k i ) f(p_i^{k_i}) f(piki)变成了 f ( p i k i + 1 ) f(p_i^{k_i+1}) f(piki+1),在这里可以先除以 f ( p i k i ) f(p_i^{k_i}) f(piki),再乘 f ( p i k i + 1 ) f(p_i^{k_i+1}) f(piki+1).

欧拉函数

  1. ϕ ( 1 ) = 1 \phi(1)=1 ϕ(1)=1
  2. ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1 ( p (p (p为素数 ) ) )
  3. ϕ ( p k ) = p k − p k − 1 = ( p − 1 ) × p k − 1 \phi(p^k)=p^k-p^{k-1}=(p-1)\times p^{k-1} ϕ(pk)=pkpk1=(p1)×pk1 ( p (p (p为素数 ) ) )
  4. m , n m,n m,n互质,则有 ϕ ( n ∗ m ) = ϕ ( n ) ∗ ϕ ( m ) \phi(n*m)=\phi(n)*\phi(m) ϕ(nm)=ϕ(n)ϕ(m)
  5. 对于任意 n = p 1 k 1 ∗ p 2 k 2 ∗ . . . ∗ p r k r n=p_1^{k_1}*p_2^{k_2}*...*p_r^{k_r} n=p1
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值