如何看待AIGC技术?

AIGC,基于人工智能技术如GAN、预训练模型等,已从早期实验进入快速发展阶段,影响内容生成和人机交互。其特征包括多模态应用和单模型应用,涉及文本、图像、语音和视频生成。关键能力在于数据、算力和算法。目前市场主要集中在营销、办公、客服等领域,未来将提高内容质量和个性化,但也面临法律、伦理和隐私挑战。
摘要由CSDN通过智能技术生成

什么是AIGC

概述

生成式人工智能(AIGC)是基于生成对抗网络(GAN)、大型预训练模型等人工智能技术方法的一种应用形式。它代表了人工智能从1.0时代进入2.0时代的重要标志。通过将多种技术进行累积融合,如GAN、CLIP、Transformer、Diffusion、预训练模型、多模态技术、生成算法等,AIGC得以快速发展。算法的创新和预训练模型的引入使得AIGC的技术能力发生了质的变化,多模态技术推动了AIGC内容的多样性,使其具备更通用和更强大的基础能力。

从计算智能、感知智能到认知智能的进阶发展来看,AIGC已经为人类社会打开了认知智能的大门。通过对大规模数据的学习训练,人工智能具备了多个不同领域的知识,只需要对模型进行适当的调整和修正,就能够完成真实场景中的任务。

AIGC在人类社会和人工智能领域具有里程碑式的意义。从短期来看,AIGC改变了基础的生产力工具;中期来看,它可能改变社会的生产关系;长期来看,它促使整个社会的生产力发生了质的突破。在这样的生产力工具、生产关系和生产力变革中,数据价值作为生产要素被极度放大。

AIGC将数据要素提升到时代核心资源的位置,在一定程度上加快了整个社会的数字化转型进程。

同时,根据不同机构的定义,生成式人工智能具有以下特征和应用领域:

- 麦肯锡:生成式人工智能旨在以一种接近人类行为的方式与人类进行交互式协作。
- Gartner:生成式人工智能是一种颠覆性的技术,可以生成以前依赖于人类的工件,并在没有人类经验和思维过程偏见的情况下提供创新的结果。
- BCG:生成式AI是一种突破性的人工智能形式,使用对抗网络(GANs)的深度学习技术来创建新颖的内容。
- TE智库:生成式人工智能将改变人机交互的关系,并创造新的产能输出结构。它将实现与人的思维同调,类似于移动设备以人类外器官形态存在,AIGC将以外脑的形式存在于人类认知中。
- 南京大学数据智能与交叉创新实验室:生成式人工智能是伴随着网络形态演化和人工智能技术变革产生的一种新的生成式网络信息内容。
- 信通院:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从Hello World开始

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值