//前置:树的直径(baidu学一下)
//引理:在树上的结点都被标记的情况下,最短路径为树的边数(maxx)*2-树的直径(ans)
//大体步骤:
//1.输入,随便找一个被标记的点为根(双向的嘛)
//2.找到能覆盖所有被标记点的最小树(jg)
//3.找到本树的直径(起点和终点一定要最浅)(dfs)
//4.求解,输出(最短路径和起止点中最浅的那个)
#include<bits/stdc++.h>
using namespace std;
struct Edge{
int u,to,next;
}edge[1000001];
int head[1000001],d[1000001],bj[1000001],ne=0,ans=-1,num=0,maxx=-1;
//注意数据范围,123456>100001
//重要广播:(建议先看完后文)
//maxx=-1:后文计算的是jg后bj为一的点数,-1才是边数
//ans=-1:便于将num的初值赋为rt,初始为0会出事
void addEdge(int u,int v){
ne++;
edge[ne].u=u;
edge[ne].to=v;
edge[ne].next=head[u];
head[u]=ne;
}
void jg(int u,int fa){
for(int i=head[u];i;i=edge[i].next){//遍历所有的儿子所在子树
int x=edge[i].to;
if(x==fa) continue;
jg(x,u);//先递归,再判断,否则只是儿子节点
bj[u]|=bj[x];//qiao黑板:所在子树中有标记的点,本身一定会被经过,所以也标记
}//当然,如果已经被标记了,那一定是标记的
return;
}
void dfs(int u,int fa){
if(ans<d[u]){
ans=d[u];
num=u;
}else if(ans==d[u]) num=min(num,u);//qiao黑板:题中是最浅解
for(int i=head[u];i;i=edge[i].next){
int x=edge[i].to;
if(x==fa||bj[x]==0) continue;//假如bj没有标记,跳过(相当于没有了)
d[x]=d[u]+1;
dfs(x,u);
}
return;
}//dfs*2,懂的都懂
int main(){
int n,m,u,v,x,ansnum,rt;
scanf("%d%d",&m,&n);
for(int i=1;i<m;i++){
scanf("%d%d",&u,&v);
addEdge(u,v);
addEdge(v,u);
}
for(int i=1;i<=n;i++){
scanf("%d",&x);
bj[x]=1;//标记结点
rt=x;//树中起始点必须是bj为1的点(jg累计后bj会变为所在子树中有无bj为1的点,必须现在判断)
}
jg(rt,0);
for(int i=1;i<=m;i++) if(bj[i]) maxx++;
dfs(rt,0);
ans=-1;
memset(d,0,sizeof(d));//注意第2次时的初始化,本句等价于d[num]=0;
ansnum=num;//保存树直径的起点,便于比较深度最浅的一点
dfs(num,0);
printf("%d\n%d",min(num,ansnum),maxx*2-ans);
return 0;
}
D - Super M
于 2023-08-16 17:36:48 首次发布