机器学习and深度学习
文章平均质量分 63
一些人工智能案例
高山莫衣
像高山一样崇高的品德和行为,不需要华丽的衣服来装饰。
展开
-
RFM客户分类模型
在Python中,可以使用Pandas、NumPy等数据分析库进行数据处理和RFM计算,使用可视化库(如Matplotlib、Seaborn)进行数据展示和分析,也可以使用机器学习库(如Scikit-learn)进行聚类分析等。在上述代码中,我们首先读取了一个交易数据文件,并计算了每个客户的RFM得分和RFM群体,然后对不同群体的客户进行了分析和营销策略制定。RFM客户分类模型是一种基于客户行为数据分析的营销分析模型,用于将客户分成不同的群体,并根据这些群体的特征制定相应的营销策略。原创 2023-04-24 17:56:12 · 2858 阅读 · 0 评论 -
和我一起学机器学习—最大熵模型(Maximum Entropy Model)
最大熵原理认为,当我们面对不确定性问题时,我们应该选择分布最均匀的模型,因为这种模型缺乏偏见,不会给任何一个特征赋予过大的权重,从而保持了最大的灵活性和不确定性。最大熵模型是一种分类模型,它可以被看作是一种逻辑斯蒂回归的推广,可以处理多分类问题。它使用最大熵原理来确定最优的特征权重,从而使得分类结果最优。同时,我们还定义了一些超参数,例如学习率和迭代次数等。,并在其中实现了模型的初始化和前向传播方法。在训练和测试部分,我们定义了。实现了一个简单的最大熵模型,并用。函数来训练和测试我们的模型。原创 2023-04-24 16:29:45 · 448 阅读 · 0 评论 -
和我一起学机器学习-逻辑斯蒂回归(Logistic Regression)
在测试模型时,我们禁用梯度计算,对测试数据集中的每个图像进行前向传播,并将输出与标签进行比较以计算模型的准确性。我们然后执行前向传播和计算损失,使用反向传播和优化器来更新模型参数。逻辑斯蒂回归是一种简单但有效的分类方法,通常用于二分类问题,但也可以扩展到多分类问题,这里不做介绍。)是一种广泛使用的统计学习方法,它可以用来处理分类问题,例如二分类问题。在训练模型时,我们首先将输入和标签转换为。时,我们将其归为一类,否则为另一类。函数,从而将连续输出转化为概率值。数据集中图像的像素数,输出维度。原创 2023-04-24 13:51:00 · 222 阅读 · 0 评论 -
和我一起学机器学习-决策树
决策树算法根据特征的属性值来将数据集分成多个子集,通过对每个子集重复这个过程,最终得到一棵树形结构,其中每个内部节点表示一个特征,每个叶子节点表示一个分类或回归结果。决策树的主要优点是易于理解和解释,可以处理离散和连续的数据,不需要对数据进行太多的预处理,同时在训练过程中能够自动选择最重要的特征。的决策树模型,然后遍历测试集中的每一个样本,对其进行预测,并将预测结果存储在。决策树是一种常用的机器学习算法,用于解决分类和回归问题。最后计算测试集的准确率并输出。原创 2023-04-24 13:43:02 · 162 阅读 · 0 评论 -
和我一起学机器学习-朴素贝叶斯法
需要注意的是,朴素贝叶斯算法假设特征之间是条件独立的,这在实际数据中往往是不成立的。因此,在实际应用中,需要对数据进行适当的预处理,以提高朴素贝叶斯算法的性能。)是一种基于概率统计的分类算法,它的原理是利用贝叶斯定理和条件独立性假设来计算后验概率,然后根据后验概率来对新的样本进行分类。在这个例子中,我们定义了一个朴素贝叶斯模型,它的fit函数中实现了计算先验概率和条件概率的过程,其中使用了。函数中,我们利用模型的先验概率和条件概率计算后验概率,并选取概率最大的类别作为预测结果。模块来实现朴素贝叶斯模型。原创 2023-04-21 14:15:52 · 385 阅读 · 0 评论 -
和我一起学机器学习-K近邻法
在训练过程中,我们使用交叉熵损失函数来计算模型的损失,并使用随机梯度下降优化器来更新模型参数。在测试过程中,我们使用测试集来评估模型的性能,计算分类准确率。模型对特征之间的距离度量方式比较敏感,需要根据实际情况选择合适的度量方式。算法的优点是简单、易于理解和实现,但是在处理大规模数据集时会比较慢,同时需要选取合适的。)是一种基于实例的学习算法,它的原理是通过计算样本之间的距离来确定最近的。值的选取对模型的性能影响较大,一般需要通过交叉验证等方法来选择最优的。个邻居,然后根据邻居的标签来预测当前样本的标签。原创 2023-04-21 14:08:03 · 112 阅读 · 0 评论 -
和我一起学机器学习-感知机
在训练过程中,我们通过循环遍历训练集中的每个样本来计算损失,并使用反向传播算法来更新模型参数。需要注意的是,感知机模型只适用于线性可分的数据集,对于非线性可分的数据集,需要使用更复杂的模型,如支持向量机、神经网络等。此外,在实际应用中,需要对数据进行预处理、调参等操作,以获得更好的性能。感知机的原理是基于神经元的工作原理,它将输入的多个特征进行加权求和,然后再通过一个激活函数进行非线性变换,最后输出一个二分类结果。在这个例子中,我们定义了一个包含一个全连接层的感知机模型,并使用了。来实现和训练感知机模型。原创 2023-04-21 12:23:17 · 147 阅读 · 0 评论 -
PyTorch实现联邦学习堆叠自编码器
现在,我们已经在每个设备上训练了一个堆叠自编码器模型,下一步是将每个设备的模型更新传递给服务器,并将这些更新聚合以更新全局模型。在实现联邦学习的堆叠自编码器时,我们需要考虑如何将每个设备上的模型更新传递给服务器,并将这些更新聚合以更新全局模型。我们将在每个设备上使用训练的本地模型来生成更新,然后将这些更新发送到服务器,服务器将聚合这些更新以更新全局模型。我们将在每个设备上使用训练的本地模型来生成更新,然后将这些更新发送到服务器,服务器将聚合这些更新以更新全局模型。来实现在设备之间共享数据和模型更新。原创 2023-04-07 18:23:06 · 593 阅读 · 0 评论 -
堆叠自编码器的一个简单例子
第一个编码器和解码器将输入的10维数据编码为4维潜在表示,第二个编码器和解码器将这个4维表示进一步编码为2维表示。这段代码将遍历100个epoch,并在每个epoch中计算模型输出和损失。这段代码将生成一张包含两行10列的图像,其中第一行是原始数据,第二行是重建数据。您可以使用这个可视化来查看模型如何重建数据,并评估模型的性能。最后,我们可以开始训练我们的模型。我们也可以将重建数据与原始数据进行比较,以评估模型的性能。本文使用PyTorch实现堆叠自编码器的案例,该模型使用生成的随机数作为原始数据集。原创 2023-04-07 18:07:15 · 606 阅读 · 2 评论 -
PyTorch实现自编码器
函数中,定义了损失函数,并对模型进行了测试。测试过程与训练过程类似,但是不需要进行梯度更新。最后返回测试损失的平均值。实现堆叠自编码器的示例代码,该代码包括三个自编码器和一些辅助函数,用于训练和测试堆叠自编码器。数据集并创建数据加载器。然后创建了堆叠自编码器模型,并将其移动到设备上。最后生成一个随机图像并进行重构,然后显示出来。函数中,定义了损失函数和优化器,然后对模型进行了训练。函数中,首先设置了设备,然后定义了超参数,接着下载。函数中,定义了损失函数,并对模型进行了测试。函数进行训练,然后调用。原创 2023-04-07 17:55:07 · 2219 阅读 · 1 评论 -
VAE自编码器案例
下面是一个使用PyTorch实现变分自编码器(VAE)的案例。VAE是一种更复杂的自编码器,它可以生成新的样本,并且在对潜在空间进行插值时呈现出更好的连续性。首先导入必要的库和模块:接着定义一个类来表示我们的VAE:这个VAE包含了一个编码器和一个解码器,其具体实现细节如下:编码器通过两个全连接层将输入图像压缩为隐变量的均值和方差。解码器通过两个全连接层,并应用sigmoid函数将隐变量重构为原始图像。关键方法包括:接下来定义一些超参数:然后加载MNIST数据集并进行预处理:在这里,我们使用了原创 2023-04-03 19:51:10 · 525 阅读 · 0 评论 -
AE编码器的案例
在这里,我们对于每个epoch,遍历训练数据集,并将每个batch的数据加载到模型中。首先将图像展平为一维张量,通过自编码器进行前向传播得到重构后的图像,然后计算重构误差并执行反向传播更新权重。在这里,我们使用了transforms库来定义一个变换,它将图像转换为张量,并归一化其像素值以使其范围在-1到1之间。在这里,我们定义了一个名为Autoencoder的类,它继承了nn.Module类。对于解码器,我们使用了Sigmoid()函数作为输出层激活函数,将其转换到0到1之间的范围内。原创 2023-04-03 19:45:30 · 301 阅读 · 0 评论 -
PyTorch框架实现文本分类的3个案例
在这个案例中,我们将使用PyTorch和卷积神经网络(CNN)来进行垃圾邮件分类。我们将使用SpamAssassin公共数据集,其中包含4,827封垃圾邮件和6,593封非垃圾邮件。在这个案例中,我们将使用PyTorch和BERT模型来进行多标签分类。我们将使用Reuters新闻语料库数据集,其中包含8,982个新闻文档,每个新闻文档都标有多个类别。在这个案例中,我们将使用PyTorch和BERT模型来进行情感分析。我们将使用IMDb电影评论数据集,其中包含50,000条正负样本的电影评论。原创 2023-03-27 13:47:45 · 1620 阅读 · 3 评论 -
联邦学习简介与2个案例详细介绍(tensorflow、numpy实现)
然后,我们在本地模型上训练每个设备的数据集,并保存每个设备的本地模型的权重。接下来,我们将本地模型的权重进行平均,得到全局模型参数,并更新全局模型的参数。在上述代码中,我们与前一个案例类似,使用clone_model()方法创建了每个参与方的本地模型,并使用全局模型的参数初始化本地模型。接下来,我们计算并更新全局模型的参数。联邦学习算法的核心思想是将机器学习任务分发给多个参与方(例如智能手机、传感器和云服务器等),然后对这些参与方的本地数据进行训练,最终合并更新的模型以获得全局模型。原创 2023-03-22 00:06:22 · 2463 阅读 · 2 评论 -
Python操作MySQL数据库详细案例
本文通过案例讲解如何使用Python操作MySQL数据库。具体任务为:假设你已经了解MySQL和知识图谱标注工具Brat,将Brat标注的结果上传到MySQL。在知识图谱的文本标注任务中,需要将数据按照事先决定的标注规则进行人工标注。Brat是一种比较著名的标注工具,但是目前不支持Windows系统,你可以安装虚拟机使用该工具。本文已经完成了一项基于Windows、Python3.7的标注软件制作工作,你可以点击实体关系文本标注工具进行查看。原创 2023-03-12 18:20:21 · 2363 阅读 · 5 评论 -
基于Brat标注数据集的python包network网络构建和搜索
在知识图谱的文本标注任务中,需要将数据按照事先决定的标注规则进行人工标注。Brat是一种比较著名的标注工具,但是目前不支持Windows系统,你可以安装虚拟机使用该工具。本文已经完成了一项基于Windows、Python3.7的标注软件制作工作,你可以点击实体关系文本标注工具进行查看。倘若你是使用的Brat标注工具, 并且对于Neo4j图数据库不是很熟悉,那你可以考虑使用Python中的network第三方库,在初步学习阶段实现demo,在下一篇文章中,将会介绍Neo4j的使用案例。原创 2023-03-12 16:37:10 · 650 阅读 · 1 评论 -
freebase的entity_id到真实数据的映射文件-免费获取
(或者访问: https://pan.baidu.com/s/10aO5C5wnxIzs0QnFul00jg?pwd=bili )freebase的entity id到真实数据的映射。原创 2023-03-12 12:19:25 · 370 阅读 · 0 评论 -
联邦学习算法介绍-FedAvg详细案例-Python代码获取
在DP-FedSGD中,被选中的参与方使用全局模型参数对局部模型进行初始化,通过批梯度下降法进行多轮梯度下降,计算梯度更新量。而在DP-FedAVG中,是利用一个批次的数据进行一次梯度下降,计算梯度更新量。由服务端收集各客户端的梯度信息,通过聚合计算后再分发给各客户端,从而实现多个客户端联合训练模型,且“原始数据不出岛”,从而保护了客户端数据隐私。假设中心方是好奇的,那么客户端通过某种规则向其他客户端广播梯度信息,收到梯度信息的客户端聚合参数并训练,将新的梯度信息广播。面向神经网络模型, 假设网络总共有。原创 2023-03-12 10:36:34 · 22037 阅读 · 151 评论 -
Python操作Neo4j数据库使用案例
Neo4j是一个世界领先的开源的基于图的数据库。其语言操作简单直观,本文假设你已经安装好Neo4j数据库,并对知识图谱有一定的了解。Neo4j数据库的查询语言为CQL,其代表Cypher查询语言。像Oracle数据库具有查询语言SQL,Neo4j具有CQL作为查询语言。你可以访问(https://www.w3cschool.cn/neo4j/neo4j_cql_introduction.html)学习Cypher查询语言。原创 2023-03-12 17:27:41 · 2949 阅读 · 14 评论