自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(32)
  • 收藏
  • 关注

原创 机器学习基础03

K-Fold交叉验证技术中,整个数据集被划分为K个大小相同的部分。一个Fold被用作验证集,其余的K-1个Fold被用作训练集。K-近邻算法(K-Nearest Neighbors,简称KNN),根据K个邻居样本的类别来判断当前样本的类别;比如在KNN算法中,k是一个可以人为设置的参数,所以就是一个超参数。如果一个样本在特征空间中的k个最相似(最邻近)样本中的大多数属于某个类别,则该类本也属于。K-折交叉验证的变种, 分层的意思是说在每一折中都保持着原始数据中各个类别的比例关系。

2024-11-13 21:05:13 454

原创 机器学习基础02

它的目的是将不同特征的数值范围缩放到统一的标准范围,以便更好地适应一些机器学习算法,特别是那些对输入数据的尺度敏感的算法。它通过对每个特征的值减去其均值,再除以其标准差,将数据转换为均值为0,标准差为1的分布。(1)特征提取, 如果不是像dataframe那样的数据,要进行特征提取,比如字典特征提取,文本特征提取。主成分分析就是把之前的特征通过一系列数学计算,形成新的特征,新的特征数量会小于之前特征数量。其中,z是转换后的数值,x是原始数据的值,μ是该特征的均值,σ是该特征的标准差。

2024-11-12 19:17:47 373

原创 机器学习基础01

Python语言机器学习工具Scikit-learn包括许多智能的机器学习算法的实现Scikit-learn文档完善,容易上手,丰富的API接口函数sklearnscikit-learn中文社区数据量小,数据在sklearn库的本地。数据量大,数据只能通过网络获取。

2024-11-11 20:28:50 943

原创 PySimpleGUI和Pymysql

PySimpleGUI 是一个用于简化 GUI 编程的 Python 包,它封装了多种底层 GUI 框架(如 tkinter、Qt、WxPython 等),提供了简单易用的 API。PySimpleGUI 包含了大量的控件(也称为小部件或组件),这些控件可以快速构建用户界面。是一个用于连接 MySQL 数据库的纯 Python 实现。它允许 Python 程序与 MySQL 数据库进行交互,执行 SQL 查询,并处理结果集。

2024-11-06 20:21:30 323

原创 face_recognition

face_recognition是一个非常流行的 Python 库,专门用于人脸识别任务。它基于 dlib 库和 HOG(Histogram of Oriented Gradients)特征以及深度学习模型,提供了简单易用的接口来进行人脸检测、面部特征点定位和人脸识别。face_recognition 库由 Adam Geitgey 开发,旨在简化人脸识别任务,使其更加容易上手。

2024-11-05 18:39:33 699

原创 OpenCV图像预处理2

高斯滤波的原理是利用高斯函数对图像进行加权平均。在滤波过程中,每个像素的值都会被其周围像素的加权平均值所取代,而这些权重则由高斯分布函数计算得出。通过这种方式,高斯滤波可以有效地减少图像中的噪声,并保留图像的整体特征。cv2.GaussianBlur() 是 OpenCV 库中用于图像模糊处理的函数之一。该函数可以对图像进行高斯模糊处理,即在每个像素周围使用高斯核来加权平均计算像素值,从而达到模糊效果。src:输入图像。ksize:高斯核的大小,通常以元组的形式指定。sigmaX。

2024-11-04 20:20:38 990

原创 OpenCV图像预处理1

用于翻转图像。翻转可以是水平翻转、垂直翻转或同时水平和垂直翻转。:输入图像,可以是任意类型和深度的多通道图像。flipCode0:沿 X 轴翻转(垂直翻转)1:沿 Y 轴翻转(水平翻转)-1:沿 X 轴和 Y 轴翻转(同时水平和垂直翻转):可选参数,输出图像。如果未提供,输出图像将与输入图像具有相同的尺寸和类型。

2024-11-01 19:17:01 823

原创 OpenCV图像基础

创建一个命名窗口,以便在该窗口中显示图像或进行其他图形操作。参数说明(str): 窗口的名称。这个名称必须是唯一的,因为它是用来标识窗口的。flags (int, 可选): 窗口的标志,用于设置窗口的行为。默认值为cv2.WINDOW_AUTOSIZE: 允许调整窗口大小。: 窗口大小根据图像大小自动调整,不能手动调整。

2024-10-31 20:00:45 1135

原创 Python基础10

一个.py 文件就是一个模块模块是含有一系列数据函数类等的程序。JSON:支持的数据类型包括对象(类似于字典)、数组(类似于列表)、字符串、数字、布尔值和 null。

2024-10-30 18:53:05 763

原创 数据结构

一条相互链接的数据节点表。每个节点由两部分组成:数据和指向下一个节点的指针。n(n≥0)个结点构成的有限集合。注意:当n=0时,称为空树;对于任一棵非空树(n> 0),它具备以下性质:树中有一个称为“根(Root)”的特殊结点,用 root 表示;其余结点可分为m(m>0)个互不相交的有限集T1,T2,... ,Tm,其中每个集合本身又是一棵树,称为原来树的“子树(SubTree)”子树之间不可以相交除了根结点外,每个结点有且仅有一个父结点;一棵N个结点的树有N-1条边。

2024-10-29 18:12:35 1155

原创 Pandas基础03

n:要抽取的行数frac:抽取的比例,比如 frac=0.5,代表抽取总体数据的50%replace:布尔值参数,表示是否以有放回抽样的方式进行选择,默认为 False,取出数据后不再放回weights:可选参数,代表每个样本的权重值,参数值是字符串或者数组random_state:可选参数,控制随机状态,默认为 None,表示随机数据不会重复;若为 1 表示会取得重复数据axis:示在哪个方向上抽取数据(axis=1 表示列/axis=0 表示行)

2024-10-28 14:24:17 675

原创 Pandas基础02

重置索引(reindex)可以更改原 DataFrame 的行标签或列标签,并使更改后的行、列标签与 DataFrame 中的数据逐一匹配。如果为 False,则返回一个新的排序后的对象。indicator:布尔值,如果为 True,则在结果中添加一个名为 __merge 的列,指示每行是如何合并的。常见的频率包括 'D'(天)、'H'(小时)、'T' 或 'min'(分钟)、'S'(秒)'right':右连接,返回右侧 DataFrame 的所有键,以及左侧 DataFrame 匹配的键。

2024-10-26 00:12:45 601

原创 Pandas基础01

axis=0 或 axis='index' 表示删除行,axis=1 或 axis='columns' 表示删除列。若在创建DF时,copy属性为True,drop() 不会修改原 DataFrame,而是返回一个新的 DataFrame。描述:如果为 True,则直接修改原 DataFrame,而不是返回一个新的 DataFrame。异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。(3)单个元素(某行某列对应的值),返回的数据类型为该元素的原始数据类型。

2024-10-24 20:20:30 639

原创 Matplotlib基础

*kwargs: 其他可选参数,用于定制网格线的外观,如 color、linestyle(ls)、linewidth(lw) 等。shape: 网格的形状,格式为 (rows, cols),表示网格的行数和列数,在figure中式全局设置。允许更灵活地指定子图的位置和大小,以非等分的形式对画布进行切分,可以创建复杂的布局。loc: 子图的起始位置,格式为 (row, col),表示子图在网格中的起始行和列。实例化 figure 对象,即绘制图形的对象,可以通过这个对象,来设置图形的样式等。

2024-10-23 21:18:00 712

原创 Numpy基础02

对于二维数组来说,axis=1 表示沿着水平方向,axis=0 表示沿着垂直方向,axis默认值为None,amin,amax求整体的最值。如果数组的长度是偶数,则中位数是中间两个数的平均值。在 NumPy 中,计算方差时使用的是统计学中的方差公式,而不是概率论中的方差公式,主要是因为 NumPy 的设计目标是处理。对于二维数组来说,axis=1 表示沿着水平方向,axis=0 表示沿着垂直方向,axis默认值为None,求整体的差值。当 axis =0 时,删除指定的行,若 axis=1,删除指定的列。

2024-10-22 19:27:25 856

原创 Numpy基础01

对数组在横向或纵向上进行一定次数的重复进行填充, 使参与运算的数组维度相同.维度匹配:如果两个数组的维度数不同,维度数较少的数组会在前面补上长度为 1 的维度。长度匹配:如果两个数组在某个维度上的长度不同,但其中一个数组在该维度上的长度为 1,则该数组会沿着该维度进行广播。不匹配:如果两个数组在某个维度上的长度既不相同也不为 1,则广播失败,抛出 ValueError。

2024-10-21 17:19:51 577

原创 Python基础09

在class外部不能访问,也不能在子类中访问作用:(1)指隐藏类的实现细节(2)一定程度上,保证class内部数据安全私有属性:__变量名私有方法:__方法名()

2024-10-18 21:12:09 1133

原创 Python基础08

数据成员:变量方法成员:函数class 类名(继承列表):实例属性(类内的变量) 定义实例方法(类内的函数) 定义类变量(class variable) 定义类方法(@classmethod) 定义静态方法(@staticmethod) 定义。

2024-10-17 23:37:17 1033

原创 Python基础07

def 函数名():语句。如果函数内部有return语句。若return执行,则返回return所连接的变量或表达式的值。若函数内部所有return都不执行,返回None,即无返回值。LEGB优先调用顺序

2024-10-16 22:56:04 393

原创 Python基础06

for out_exp in input_list:迭代 input_list 将 out_exp 传入到 out_exp_res 表达式中。for out_exp in input_list:迭代 input_list 将 out_exp 传入到 out_exp_res 表达式中。for out_exp in input_list:迭代 input_list 将 out_exp 传入到 out_exp_res 表达式中。out_exp_res:列表生成元素表达式,可以是有返回值的函数。

2024-10-15 20:10:44 301

原创 线性代数基础02

几何定义:向量是一个有方向和大小的量,通常用箭头表示。向量的起点称为原点,终点称为向量的端点。代数定义:向量是一个有序的数组,通常表示为列向量或行向量。例如,一个 n 维列向量可以表示为:一个 n 维行向量可以表示为:其中 v1,v2,…,vn是向量的分量。行向量和列向量再本质上没有区别。向量的表示几何表示:在二维或三维空间中,向量通常用箭头表示,箭头的方向表示向量的方向,箭头的长度表示向量的大小。代数表示:向量可以用列向量或行向量表示,如上所述。坐标表示:在二维或三维空间中,向量可以用坐标表示。

2024-10-14 14:12:49 910

原创 线性代数基础01

行列式是一个数学概念,主要用于线性代数中,它是一个可以从方阵(即行数和列数相等的矩阵)形成的一个标量(即一个单一的数值)。以3阶行列式为例:从上述公式可以看出:3阶行列式按行展开后为6项,每项为3个不同行不同列的3个元素相乘aij元素的行标i都是123的自然排列aij元素列标j则为:123、231、312、321、213、132,总数为3!=6分别计算列标排列的逆序数:N(123) = 0 偶数N(231) = 1 + 1 = 2 偶数N(312) = 2 偶数。

2024-10-12 19:02:16 1509

原创 概率论基础02

由上图可知,F(-x)是曲线中红色部分的面积,F(x)是曲线中黄色部分的面积,由分布函数的性质可知,整个曲线的面积=1,所以蓝色部分的面积=1-黄色部分面积=1-F(x),另外正态分布曲线是以y轴对称的,蓝色部分的面积=F(-x),所以:F(-x)=1-F(x)对于离散型随机变量函数的分布函数计算,最简单的方法是列出随机变量X的分布表,然后根据新的函数关系计算出新随机变量Y的值,其值对应的概率就是X原来值对应的概率值,然后形成分布表,如果Y值有重复,则将重复值对应的概率相加即可。

2024-10-10 17:34:13 998

原创 概率论基础01

设 A和 B 是两个事件。如果满足以下条件,则称事件 A 和事件 B 是独立的:其中:P(AB)是事件 A 和事件 B 同时发生的概率(联合概率)。P(A)是事件 A 发生的概率。P(B) 是事件 B 发生的概率。

2024-10-09 19:25:35 746

原创 高数基础02

定积分是微积分中的一个重要概念,用于求解函数在某个区间上的累积效应或面积。

2024-10-09 13:48:48 935

原创 高数基础01

函数f 是从一个集合 X(称为定义域,X包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中

2024-10-08 19:56:20 887

原创 Python基础05

即一个字典中键不可重复,值可以。移除当前集合中在另外一个指定集合相同的元素,并将另外一个指定集合中不同的元素插入到当前集合中。从调用它的集合中移除所有在指定集合中出现的元素,即只保留那些仅存在于调用它的集合中的元素。创建一个新字典,以序列seq中元素做字典的键,val为字典所有键对应的初始值。添加元素到集合,且参数可以是列表,元组,字典等 ,x 可以有多个,用逗号隔开。将元素 x 添加到集合 s 中,如果元素已存在,则不进行任何操作。将元素 x 从集合 s 中移除,如果元素不存在,则会发生错误。

2024-09-30 19:38:12 661

原创 Python基础04

end不填默认为-(len(list)+1),即[start:]。切片list[start:end:i]或[start:end],从start位置开始,到end结束,步长为i。,是用方括号标注,逗号分隔的一组值。索引也可以从尾部开始,最后一个元素的索引为 -1,往前一位为 -2,以此类推。③切片为左闭右开,即[start:end],end位置的数据取不到。可存储:Number型,字符串,list,dict,set,None。将可迭代数据转换为列表,可迭代数据:列表,元组,字符串,range。

2024-09-29 20:28:44 725

原创 Python基础03

用于生成一个整数序列,序列中的每个元素按照指定的步长递增(默认步长为1)。即continue执行时,在当前循环体中:continue之后的代码在本次循环不再执行,而开始下一次的循环。# 若数字在1-100之间,判断是不是5的倍数,若不是:提示用户数字不是5的倍数。print(f"{number}不是5的倍数")number = input("请输入一个数字:")# 若数字是5的倍数,判断:大于50,小于50,等于50。number=input("请输入一个数字:")print("非法输入,请重新输入")

2024-09-27 21:39:16 692

原创 Python基础02

按照行('\r', '\r\n', \n')分隔,返回一个包含各行作为元素的列表,如果参数 keepends 为 False,不包含换行符和回车符,如果为 True,则保留换行符和回车符。检查字符串是否以 suffix 结束,如果 beg 或者 end 指定则检查指定的范围内是否以 suffix 结束,如果是,返回 True,否则返回 False。检测 str 是否包含在字符串中,如果指定范围 beg 和 end ,则检查是否包含在指定范围内,如果包含返回开始的索引值,否则返回-1。

2024-09-26 23:16:26 900

原创 Python基础01

①变量可以保存和修改数据②访问变量中的数据:访问的变量必须已声明且为访问前最新的一次修改的值。③存和取:未定义变量只可存,已定义变量可存可取。3.Python的注释2.1 #:单行注释2.2 用’’’ ’’’或””” ”””进行多行注释。

2024-09-25 21:54:04 657

原创 Python环境搭建

情况一:复制Anaconda的路径时,C盘中“用户”变“User”,即:在环境变量中设置的路径是全英文,但其实路径包含中文。命令:conda create --name ai01 python==3.9。情况二:路径输入错误,更改后需重新打开Windows命令行窗口。注意:自己的操作系统,此处选择下载Windows版本。敲击回车,若显示Anconda的版本则安装成功。命令:conda env list。或者:conda info -e。在搜索栏输入“环境变量”

2024-09-24 19:52:01 522

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除