判断整数序列是不是二元查找树的后序遍历结果

程序员面试题精选(06)-判断整数序列是不是二元查找树的后序遍历结果
题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回 true ,否则返回 false 例如输入 5 7 6 9 11 10 8 ,由于这一整数序列是如下树的后序遍历结果:
          8
       /    /
       6     10
    / /     / /
    5     7     9    11
因此返回 true
如果输入 7 4 6 5 ,没有哪棵树的后序遍历的结果是这个序列,因此返回 false
分析:这是一道 trilogy 的笔试题,主要考查对二元查找树的理解。
在后续遍历得到的序列中,最后一个元素为树的根结点。从头开始扫描这个序列,比根结点小的元素都应该位于序列的左半部分;从第一个大于跟结点开始到跟结点前面的一个元素为止,所有元素都应该大于跟结点,因为这部分元素对应的是树的右子树。根据这样的划分,把序列划分为左右两部分,我们递归地确认序列的左、右两部分是不是都是二元查找树。
参考代码:
using namespace std;
///
// Verify whether a squence of integers are the post order traversal
// of a binary search tree (BST)
// Input: squence - the squence of integers
//
         length    - the length of squence
// Return: return ture if the squence is traversal result of a BST,
//
          otherwise, return false
///
bool verifySquenceOfBST(
int squence[], int length)
{
       if (squence == NULL || length <= 0)
             return false ;
       // root of a BST is at the end of post order traversal squence
       int root = squence[length - 1];
       // the nodes in left sub-tree are less than the root
       int i = 0;
       for (; i < length - 1; ++ i)
       {
             if (squence > root)
                   break ;
       }

       // the nodes in the right sub-tree are greater than the root
       int j = i;
       for (; j < length - 1; ++ j)
       {
             if (squence[j] < root)
                   return false ;
       }

       // verify whether the left sub-tree is a BST
       bool left = true ;
       if (i > 0)
             left = verifySquenceOfBST(squence, i);

       // verify whether the right sub-tree is a BST
       bool right = true ;
       if (i < length - 1)
             right = verifySquenceOfBST(squence + i, length - i - 1);

       return (left && right);
}


二元查找后序遍历特点是:序列最后一个元素为根节点,且序列可以划分为两部分,前半部分小于根节点,后半部分大于根节点。 以下是用 C 语言实现的判断方法: ```c #include <stdio.h> #include <stdbool.h> bool isBST(int arr[], int start, int end) { if (start >= end) { return true; } int root = arr[end]; // 序列最后一个元素为根节点 int i; for (i = start; i < end; i++) { if (arr[i] > root) { break; } } int j; for (j = i; j < end; j++) { if (arr[j] < root) { return false; } } bool left = isBST(arr, start, i - 1); // 递归判断左子 bool right = isBST(arr, i, end - 1); // 递归判断右子 return left && right; } int main() { int arr[] = {2, 4, 3, 6, 8, 7, 5}; int n = sizeof(arr) / sizeof(arr[0]); bool result = isBST(arr, 0, n - 1); printf("%s", result ? "true" : "false"); return 0; } ``` 在上面的代码中,`isBST` 函数用于判断给定的数组 `arr` 是否为二元查找后序遍历。函数接收三个参数:数组 `arr`,序列起点下标 `start` 和序列终点下标 `end`。函数首先判断序列是否为空或只有一个元素,如果是,则返回 `true`。然后,函数将序列最后一个元素作为根节点,并根据根节点将序列分为两部分,前半部分小于根节点,后半部分大于根节点。接着,函数使用递归判断左子和右子是否分别为二元查找后序遍历。如果左子和右子都是二元查找后序遍历,则整个序列就是二元查找后序遍历。 在 `main` 函数中,我们用一个示例数组调用 `isBST` 函数,并打印判断结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值