LeoLee

https://github.com/YulongLee & https://www.kaggle.com/yulonglee

百度深度学习工程师认证(已通过)

考试时间:2019.8.24 本人图像处理与模式识别专业,有一定的基础。 10多天之后参加百度深度学习工程师认证,记录中 考试参考资源: https://ai.baidu.com/paddlepaddle/openCourses(个人感觉讲的不是很好,有点无趣(背书),最好是结合博客及...

2019-08-10 18:50:23

阅读数 387

评论数 4

SIFT算法

SIFT算法简介 SIFT算子是一种图像的局部描述子,具有尺度、旋转、平移的不变性,而且对光照变化、仿射变换和3维投影变换具有一定的鲁棒性。在Mikolajczyk(在参考文献中有个下载链接,包括了这些论文,0积分)对包括SIFT算子在内的十种局部描述子所做的不变性对比实验中,SIFT及其扩展...

2019-07-27 10:53:51

阅读数 12

评论数 0

车牌识别系统设计总结

车牌识别系统 本次项目的主要流程分为如下几步: 1.图像预处理 2.车牌定位 3.车牌定位 4.字符分割 5.字符识别 车牌识别系统实现流程图如下图所示: 车牌识别系统步骤: 1.图像预处理 输入原始图像: 图像预处理流程图: ...

2019-07-19 11:30:24

阅读数 65

评论数 0

SVM(支持向量机)算法介绍

最近正好有时间将SVM的推导整理一遍,借此文章记录自己的学习过程, 在本文中借鉴了T老师的讲义和一些博文,以及李航的统计学习方法,若有不足之处,望海涵。 SVM svm算法通俗的理解在二维上,就是找一分割线把两类分开,问题是如下图三条线都可以把红色点和黄色点分开,但哪条线是最优的呢?如果数据本...

2019-06-25 14:57:11

阅读数 100

评论数 0

项目总结:人脸识别签到系统

人脸识别签到系统项目总结 第一部分:项目简介 实验室人脸识别签到系统 第二部分:项目系统架构设计 2.1业务架构 2.2 技术架构 基础设施:主要是GPU,基于CUDA的开发 学习框架:主要是Dlib Opencv Tensorflow 算法模型:主要是人脸区域检测的算...

2019-06-24 16:40:01

阅读数 216

评论数 0

图像旋转的原理与实现

图像旋转的原理与实现 图像旋转的原理与实现 一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。设点逆时针旋转角后...

2019-06-17 12:00:28

阅读数 196

评论数 0

精确率和召回率

实际上非常简单,精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP),也就是 而召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能,一...

2019-06-17 10:16:14

阅读数 17

评论数 0

神经网络中的几种权重初始化方法

神经网络中的几种权重初始化方法 在深度学习中,对神经网络的权重进行初始化(weight initialization)对模型的收敛速度和性能的提升有着重要的影响。 在神经网络在计算过程中需要对权重参数w不断的迭代更新,已达到较好的性能效果。但在训练的过程中,会遇到梯度消失和梯度爆炸等现象。因此...

2019-06-14 13:29:28

阅读数 322

评论数 0

Object Detection网络框架学习:SSD

SSD(Single Shot MultiBox Detector)是ECCV2016的一篇文章,属于one - stage套路。在保证了精度的同时,又提高了检测速度,相比当时的Yolo和Faster R-CNN是最好的目标检测算法了,可以达到实时检测的要求。在Titan X上,SSD在VOC20...

2019-05-26 14:07:07

阅读数 23

评论数 0

GitHub:目标检测最全论文集锦

https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html

2019-05-24 10:48:29

阅读数 35

评论数 0

Object Detection网络框架学习:YOLOV1

YOLO V1是继 RCNN,fast-RCNN 和 faster-RCNN之后,Ross Girshick 针对 DL 目标检测速度问题提出的另外一种框架。YOLO V1 其增强版本在 GPU 上能跑45fps,简化版本155fps。 YOLO 1.YOLO 的核心思想 YOLO ...

2019-05-20 21:16:24

阅读数 26

评论数 0

Object Detection网络框架学习:Faster-RCNN

经过RCNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine)...

2019-05-15 11:41:39

阅读数 32

评论数 0

Object Detection网络框架学习:Fast-RCNN

2014年R-CNN横空出世,首次将卷积神经网络带入目标检测领域。受SPPnet启发,rbg在15年发表Fast R-CNN,它的构思精巧,流程更为紧凑,大幅提高目标检测速度。在同样的最大规模网络上,Fast R-CNN和R-CNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0...

2019-05-14 15:47:14

阅读数 22

评论数 0

CNN网络架构学习:Chapter-6-DenseNet(附代码tensorflow)

CVPR2017年的Best Paper, DenseNet脱离了加深网络层数(ResNet)和加宽网络结构(Inception)来提升网络性能的定式思维,从特征的角度考虑,通过特征重用和旁路(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了gradient vanishing...

2019-05-13 11:28:07

阅读数 46

评论数 0

CNN网络架构学习:Chapter-5-ResNet(附代码tensorflow)

ResNet(Residual Neural Network)由微软研究院的Kaiming He等人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,ResNet在网络结构上做了大创新,而不再是简单的堆积层数,ResNet在卷积神经网络的新...

2019-05-12 18:30:39

阅读数 66

评论数 0

Object Detection网络框架学习:SPPNet

SPPNet SPP-Net是一种可以不用考虑图像大小,输出图像固定长度网络结构,并且可以做到在图像变形情况下表现稳定。SSP-net的效果已经在不同的数据集上面得到验证,速度上比R-CNN快24-102倍。在ImageNet 2014的比赛中,此方法检测中第二,分类中第三。 SPPNet经典...

2019-05-12 15:38:04

阅读数 42

评论数 0

CNN网络架构学习:Chapter-4-GoogleNet(附代码tensorflow)

GoogLeNet在2014的ImageNet分类任务上击败了VGG-Nets以较大的优势获得冠军。GoogLeNet跟AlexNet,VGG-Nets这种单纯依靠加深网络结构进而改进网络性能的思路不一样,它在加深网络的同时(22层),也在网络结构上做了创新,引入Inception结构代替了单纯的...

2019-05-12 13:05:23

阅读数 44

评论数 0

CNN学习-CNN图像尺寸输入限制问题

通过CNN组成(卷积层和全连接层)进行分析。(1)卷积层   卷积层对于图像是没有尺寸限制要求的。输入图像是28*28,卷积仅于自身的卷积核大小,维度有关,输入向量大小对其无影响(如第一层卷积,输入图像的大小和维度)。 # 输入图像 x = tf.placeholder(tf.float32,...

2019-05-11 11:42:10

阅读数 442

评论数 0

Object Detection网络框架学习:R-CNN

R-CNN R-CNN的全称是Region-CNN,是第一个成功将深度学习应用到目标检测上的算法。R-CNN基于卷积神经网络(CNN),线性回归,和支持向量机(SVM)等算法,实现目标检测技术。 R-CNN经典论文《Rich feature hierarchies for Accurate O...

2019-05-11 11:38:56

阅读数 40

评论数 0

CNN网络架构学习:Chapter-3-VGGNet(附代码tensorflow)

VGG-Nets是由牛津大学计算机视觉组(Visual Geometry Group)和Google Deepmind公司研究员一起研发的深度卷积神经网络,是2014年ImageNet竞赛定位任务的第一名和分类任务的第二名的中的基础网络。VGG可以看成是加深版本的AlexNet. 都是conv l...

2019-05-11 09:50:58

阅读数 41

评论数 0

提示
确定要删除当前文章?
取消 删除