小鱼爱吃草灬灬
码龄7年
关注
提问 私信
  • 博客:266,919
    社区:1
    266,920
    总访问量
  • 86
    原创
  • 1,204,206
    排名
  • 97
    粉丝
  • 0
    铁粉

个人简介:纸上得来终觉浅,绝知此事要躬行

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2018-04-17
博客简介:

LeoLee

博客描述:
纸上得来终觉浅,绝知此事要躬行
查看详细资料
个人成就
  • 获得281次点赞
  • 内容获得31次评论
  • 获得1,148次收藏
  • 代码片获得382次分享
创作历程
  • 4篇
    2020年
  • 98篇
    2019年
成就勋章
TA的专栏
  • 比赛
  • 面部检测识别
  • 百度实习笔记
    4篇
  • 深度学习网络架构
    9篇
  • Object Detection网络框架
    10篇
  • 数据结构和算法练习
  • 深度学习知识点总结
    6篇
  • 数字图像处理
    3篇
  • 机器学习知识点总结
    3篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencv计算机视觉机器学习caffe深度学习神经网络tensorflowmxnetpytorch图像处理nlpscikit-learn聚类集成学习迁移学习分类回归
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

《小目标目标检测的解决方法及方式》

《小目标目标检测的解决方法及方式》最近在做小目标相关的项目,参考了一些博客、论文及书籍,在这里对小目标的方法和方式做了些总结。如果有哪些问题理解错误或补充欢迎讨论。1.什么是小目标检测在物体检测的各种实际应用场景中,为满足需求,我们通常希望检测出不同大小的物体。多尺度也是物体检测与图像分类两个任务的一大区别。分类问题通常针对同一种尺度,如ImageNet中的224*224大小;而物体检测中,模型需要对不同尺度的物体都能检测出来,这要求模型对于尺度要具有鲁棒性。在多尺度的物体中,大尺度的物体由于面积大、
原创
发布博客 2020.11.27 ·
13671 阅读 ·
35 点赞 ·
1 评论 ·
238 收藏

2017-cvpr-《Interspecies Knowledge Transfer for Facial Keypoint Detection》数据集

发布资源 2020.06.03 ·
txt

物体检测之损失函数:标准交叉熵损失、平衡交叉熵损失、 Focal Loss

1.标准交叉熵损失标准的交叉熵(Cross Entropy,CE)函数,其形式如下所示。公式中,p代表样本在该类别的预测概率,y代表样本标签。可以看出,当标签为1时,p越接近1,则损失越小;标签为0时p越接近0,则损失越小,符合优化的方向。标准的交叉熵中所有样本的权重都是相同的,因此如果正、负样本不均衡,大量简单的负样本会占据主导地位,少量的难样本与正样 本会起不到作用,导致精度变差。为...
原创
发布博客 2020.04.30 ·
7213 阅读 ·
6 点赞 ·
0 评论 ·
43 收藏

物体检测之非极大值抑制:NMS、softNMS、softerNMS、IoU-Net

当前的物体检测算法为了保证召回率,对于同一个真实物体往往会有多个的候选框输出。由于多余的候选框会影响检测精度,因此需要利用NMS过滤掉重叠的候选框,得到最佳的预测输出。当前有如下几种较为常见的NMS方法,1.基本NMS非极大值抑制, 顾名思义就是抑制不是极大值的边框,这里的抑制通常是直接去掉冗余的边框。这个过程涉及以下两个量化指标:1.预测得分:NMS假设一个边框的预测得分越高,这个框...
原创
发布博客 2020.04.28 ·
1692 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

轻量化网络-squeezeNet、MobileNet、ShuffleNet

对于轻量化的网络设计,目前较为流行的有SqueezeNet、 MobileNet、ShuffleNet等结构。其中,SqueezeNet采用压缩再扩展的结构,MobileNet使用了效率更高的深度可分离卷积,而ShuffleNet提出了通道混洗的操作,从而进一步降低了模 型的计算量。SqueezeNet...
原创
发布博客 2020.04.27 ·
2375 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

Python数据存储:pickle模块的使用讲解

机器学习中,我们常常需要把训练好的模型存储起来,这样在进行决策时直接将模型读出,而不需要重新训练模型,这样就大大节约了时间。Python提供的 pickle模块就很好地解决了这个问题,它可以序列化对象并保存到磁盘中,并在需要的时候读取出来,任何对象都可以执行序列化操作。Pickle模块中最常用的函数为:(1)pickle.dump(obj, file, [,protocol])...
转载
发布博客 2019.11.15 ·
373 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Opencv.VideoWriter()函数

import numpy as npimport cv2cap = cv2.VideoCapture(0)//定义视频编码器//这里有必要提一下fourcc//FourCC全称Four-Character Codes,代表四字符代码 (four character code), 它是一个32位的标示符,其实就是typedef unsigned int FOURCC;是一种独立标示视...
转载
发布博客 2019.10.08 ·
3534 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

Python 返回目录os.getcwd()函数用法

os.getcwd()函数:返回当前进程的工作目录。import os, sys# 切换到 "/var/www/html" 目录os.chdir("/var/www/html" )# 打印当前目录print ("当前工作目录 : %s" % os.getcwd())# 打开 "/tmp"fd = os.open( "/tmp", os.O_RDONLY )# 使用 os...
原创
发布博客 2019.10.08 ·
657 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python路径拼接os.path.join()函数的用法

os.path.join()函数:连接两个或更多的路径名组件1.如果各组件名首字母不包含’/’,则函数会自动加上demo1import osPath1 = 'home'Path2 = 'develop'Path3 = 'code'Path10 = Path1 + Path2 + Path3Path20 = os.path.join(Path1,Path2,Path3)...
原创
发布博客 2019.10.08 ·
12686 阅读 ·
53 点赞 ·
0 评论 ·
220 收藏

百度深度学习工程师认证(已通过)

考试时间:2019.8.24本人图像处理与模式识别专业,有一定的基础。10多天之后参加百度深度学习工程师认证,记录中考试参考资源:https://ai.baidu.com/paddlepaddle/openCourses(个人感觉讲的不是很好,有点无趣(背书),最好是结合博客及相关文献进行了解)第一天:机器学习入门第1章监督学习与非监督学习简介第2章...
原创
发布博客 2019.08.10 ·
8634 阅读 ·
12 点赞 ·
12 评论 ·
67 收藏

SIFT算法

SIFT算法简介 SIFT算子是一种图像的局部描述子,具有尺度、旋转、平移的不变性,而且对光照变化、仿射变换和3维投影变换具有一定的鲁棒性。在Mikolajczyk(在参考文献中有个下载链接,包括了这些论文,0积分)对包括SIFT算子在内的十种局部描述子所做的不变性对比实验中,SIFT及其扩展算法已被证实在同类描述子中具有最强的健壮性。 SIFT算法的主要思想是在尺度空间寻找极值...
转载
发布博客 2019.07.27 ·
491 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

车牌识别系统设计总结

车牌识别系统本次项目的主要流程分为如下几步:1.图像预处理2.车牌定位3.车牌定位4.字符分割5.字符识别车牌识别系统实现流程图如下图所示:车牌识别系统步骤:1.图像预处理输入原始图像:图像预处理流程图: ...
原创
发布博客 2019.07.19 ·
8917 阅读 ·
12 点赞 ·
3 评论 ·
103 收藏

SVM(支持向量机)算法介绍

最近正好有时间将SVM的推导整理一遍,借此文章记录自己的学习过程, 在本文中借鉴了T老师的讲义和一些博文,以及李航的统计学习方法,若有不足之处,望海涵。SVMsvm算法通俗的理解在二维上,就是找一分割线把两类分开,问题是如下图三条线都可以把红色点和黄色点分开,但哪条线是最优的呢?如果数据本身比较难分怎么办?这都是我们要考虑的问题。决策边界:选出离样本点最远的线段。...
原创
发布博客 2019.06.25 ·
1178 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

项目总结:人脸识别签到系统

人脸识别签到系统项目总结第一部分:项目简介实验室人脸识别签到系统第二部分:项目系统架构设计2.1业务架构2.2 技术架构基础设施:主要是GPU,基于CUDA的开发学习框架:主要是Dlib Opencv Tensorflow算法模型:主要是人脸区域检测的算法模型,人脸特征点检测算法模型,人脸对齐算法模型,以及活体检测的算法模型视觉技术:主要有实时视频...
原创
发布博客 2019.06.24 ·
13108 阅读 ·
24 点赞 ·
4 评论 ·
161 收藏

图像旋转的原理与实现

图像旋转的原理与实现图像旋转的原理与实现一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。设点逆时针旋转角后的对应点为。那么,旋转前后点、的坐标分别是:(...
转载
发布博客 2019.06.17 ·
7736 阅读 ·
10 点赞 ·
0 评论 ·
21 收藏

精确率和召回率

实际上非常简单,精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP),也就是而召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN)。其实就是分母不...
转载
发布博客 2019.06.17 ·
319 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

神经网络中的几种权重初始化方法

神经网络中的几种权重初始化方法在深度学习中,对神经网络的权重进行初始化(weight initialization)对模型的收敛速度和性能的提升有着重要的影响。在神经网络在计算过程中需要对权重参数w不断的迭代更新,已达到较好的性能效果。但在训练的过程中,会遇到梯度消失和梯度爆炸等现象。因此,一个好的初始化权重能够对这两个问题有很好的帮助,并且,初始化权重能够有利于模型性能的提升,以及增快收...
原创
发布博客 2019.06.14 ·
6229 阅读 ·
4 点赞 ·
0 评论 ·
22 收藏

Object Detection网络框架学习:SSD

SSD(Single Shot MultiBox Detector)是ECCV2016的一篇文章,属于one - stage套路。在保证了精度的同时,又提高了检测速度,相比当时的Yolo和Faster R-CNN是最好的目标检测算法了,可以达到实时检测的要求。在Titan X上,SSD在VOC2007数据集上的mAP值为74.3%,检测速度为59fps。SSDSSD效果为什么这么好...
原创
发布博客 2019.05.26 ·
304 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

GitHub:目标检测最全论文集锦

https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
原创
发布博客 2019.05.24 ·
488 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Object Detection网络框架学习:YOLOV1

YOLO V1是继 RCNN,fast-RCNN 和 faster-RCNN之后,Ross Girshick 针对 DL 目标检测速度问题提出的另外一种框架。YOLO V1 其增强版本在 GPU 上能跑45fps,简化版本155fps。YOLO1.YOLO 的核心思想 YOLO 的核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) ...
原创
发布博客 2019.05.20 ·
368 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多