Flink kafka connectors 源码详解---<2>

本文深入解析Flink连接Kafka的源码,重点介绍SourceCoordinator的工作流程,包括worker的注册、split的获取与处理。SourceOperator在Open方法中进行注册,SourceCoordinator通过RPC传递split信息。KafkaSource创建KafkaPartitionSplitReader和KafkaRecordEmitter,用于消费Kafka数据并维护offset状态。SplitFetcherManager管理split,维护线程池,SplitFetcher负责实际的数据拉取任务。
摘要由CSDN通过智能技术生成

接着上篇哈~

work部分,先总结 work 要干的工作
1.rpc 到 SourceCoordinator 表示 我已经开始工作了,要注册自己的id,并且获取对应切分的分区信息。
2.等传来的分区信息,等到后,做准备工作,获取tp的offset,然后,要构建一个拉取tp数据的线程。维护 tp的offset状态。
3.异常处理。

先看注册部分,该部分发生在SourceOperator 的Open方法
可能会发生的rpc 部分

// 这里是获取split,如果失败重启,就从ck readerState 中获得split
        final List<SplitT> splits = CollectionUtil.iterableToList(readerState.get());
       // 如果split不为空,基本上就可以按照split 先去消费数据
        if (!splits.isEmpty()) {
   
            sourceReader.addSplits(splits);
        }
         //看英文翻译,也知这就是注册,表示有新的分区信息,记得通知。
        // Register the reader to the coordinator.
        registerReader();

        // Start the reader after registration, sending messages in start is allowed.
        sourceReader.start();

其中 注册就是 rpc 操作了,向SourceCoordinator发送注册消息。然后,SourceCoordinator就会回传split消息。

 private void registerReader() {
   
        operatorEventGateway.sendEventToCoordinator(
                new ReaderRegistrationEvent(
                        getRuntimeContext().getIndexOfThisSubtask(), localHostname));
    }

从此开始添加split的旅程

而在SourceOperator 上的处理SourceCoordinator回传的split消息,就是添加该split

 public void handleOperatorEvent(OperatorEvent event) {
   
        if (event instanceof AddSplitEvent) {
   
            try {
   
                sourceReader.addSplits(((AddSplitEvent<SplitT>) event).splits(splitSerializer));
            } catch (IOException e) {
   
                throw new FlinkRuntimeException("Failed to deserialize the splits.", e);
            }
        }    
   }         

上述代码中的 sourceReader 正是KafkaSource 的createReader() 所产生。
KafkaSource 创建了KafkaPartitionSplitReader(后续用来创建consumer消费 kafka数据) 、KafkaRecordEmitter ( 发送 record、以及维持 split的 offset)等

代码是创建KafkaSourceReader的过程

 public SourceReader<OUT, KafkaPartitionSplit> createReader(SourceReaderContext readerContext)
            throws Exception {
   
        FutureCompletingBlockingQueue<RecordsWithSplitIds<Tuple3<OUT, Long, Long>>> elementsQueue =
                new FutureCompletingBlockingQueue<>();
        deserializationSchema.open(
                new DeserializationSchema.InitializationContext() {
   
                    @Override
                    public MetricGroup getMetricGroup() {
   
                        return readerContext.metricGroup().addGroup(
### 回答1: 下面是一个简单的 Flink 应用程序,将 Kafka 主题中的数据读取并写入到另一个 Kafka 主题: ```java import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer; import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.common.serialization.StringSerializer; import java.util.Properties; public class KafkaToFlinkToFlinkKafka { public static void main(String[] args) throws Exception { // set up the execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // configure Kafka consumer Properties consumerProps = new Properties(); consumerProps.setProperty("bootstrap.servers", "localhost:9092"); consumerProps.setProperty("group.id", "test-group"); // create a Kafka consumer data source FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("input-topic", new SimpleStringSchema(), consumerProps); // read from Kafka DataStream<String> stream = env.addSource(consumer); // configure Kafka producer Properties producerProps = new Properties(); producerProps.setProperty("bootstrap.servers", "localhost:9092"); // create a Kafka producer sink FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>("output-topic", new KafkaSerializationSchema<String>() { @Override public ProducerRecord<byte[], byte[]> serialize(String s, Long aLong) { return new ProducerRecord<>("output-topic", s.getBytes()); } }, producerProps, FlinkKafkaProducer.Semantic.EXACTLY_ONCE); // write to Kafka stream.addSink(producer); // execute the Flink job env.execute("Kafka to Flink to Kafka"); } } ``` 在上面的代码中,我们首先创建了一个 `StreamExecutionEnvironment` 对象,然后使用 Kafka 的消费者API读取一个名为 `input-topic` 的 Kafka 主题中的数据,并将其转换为 Flink 数据流。接下来,我们创建一个 Kafka 生产者,并将数据流写入名为 `output-topic` 的 Kafka 主题。最后,我们调用 `env.execute()` 来启动 Flink 作业。 请注意,上面的代码只是一个简单的入门级示例。在生产环境中,您可能需要更复杂的逻辑来处理数据并将其写入 Kafka 主题。 ### 回答2Flink是一个流处理框架,它可以处理流式数据,并且可以与Kafka等消息队列相结合,实现数据的实时处理和分析。下面是一个使用FlinkKafka数据写入Kafka的入门级示例。 首先,我们需要引入FlinkKafka的相关依赖包,并创建一个Flink程序入口。 ``` import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.producer.ProducerConfig; import java.util.Properties; public class KafkaToKafkaDemo { public static void main(String[] args) throws Exception { // 创建Flink程序入口 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 设置Kafka的相关配置 Properties properties = new Properties(); properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka1:9092,kafka2:9092,kafka3:9092"); properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "flink-consumer"); properties.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka1:9092,kafka2:9092,kafka3:9092"); // 创建Kafka消费者 FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("input-topic", new SimpleStringSchema(), properties); // 添加Kafka消费者到Flink程序中 DataStream<String> input = env.addSource(kafkaConsumer); // 创建Kafka生产者 FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("output-topic", new SimpleStringSchema(), properties); // 将输入数据写入Kafka input.addSink(kafkaProducer); // 执行Flink程序 env.execute("Kafka to Kafka Demo"); } } ``` 上述代码中,我们首先创建了一个Flink程序入口,然后设置了连接Kafka所需的配置信息。之后,我们创建了一个Kafka消费者,并将其添加到Flink程序中。接着,我们创建了一个Kafka生产者,并将输入的数据写入到Kafka中。最后,我们执行了Flink程序。 需要注意的是,在上述代码中,我们需要将`kafka1:9092,kafka2:9092,kafka3:9092`替换为实际的Kafka集群地址,`input-topic`和`output-topic`替换为实际的输入和输出主题名称。 这是一个简单的入门级示例,演示了如何使用FlinkKafka数据写入Kafka。你可以根据自己的需求,在此基础上进行更复杂的流处理操作。 ### 回答3: Flink是一个流计算引擎,可以用来处理大规模的实时数据流。而Kafka是一种高吞吐量的分布式消息队列,常用于构建数据流处理平台。那么如果想要将Kafka中的数据写入到另一个Kafka集群中,可以使用Flink来实现。下面是一个入门级的示例代码,演示了如何使用Java编写一个简单的Flink作业来实现将Kafka数据写入到另一个Kafka集群中。 首先,需要在项目的pom.xml文件中添加FlinkKafka相关的依赖: ```xml <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.12</artifactId> <version>1.11.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <<artifactId>flink-connector-kafka_2.12</artifactId> <version>1.11.2</version> </dependency> </dependencies> ``` 接下来,可以编写一个简单的Flink作业,该作业从一个Kafka主题中消费数据,并将其写入到另一个Kafka主题中: ```java import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer; import org.apache.flink.streaming.connectors.kafka.internals.KafkaSerializationSchemaWrapper; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import java.util.Properties; public class KafkaToFlinkToFlinkKafkaDemo { public static void main(String[] args) throws Exception { // 创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 设置Kafka消费者的配置 Properties consumerProps = new Properties(); consumerProps.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka_source:9092"); consumerProps.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "flink-consumer"); // 创建一个从Kafka读取数据的数据流 DataStream<String> kafkaSource = env .addSource(new FlinkKafkaConsumer<>("input_topic", new SimpleStringSchema(), consumerProps)); // 设置Kafka生产者的配置 Properties producerProps = new Properties(); producerProps.setProperty("bootstrap.servers", "kafka_target:9092"); // 创建一个写入Kafka的数据流 // 注意:这里将消息序列化为字符串,所以消费者也需要使用相同的字符串序列化器来读取数据 DataStream<String> kafkaSink = kafkaSource .addSink(new FlinkKafkaProducer<>("output_topic", new KafkaSerializationSchemaWrapper<>(new SimpleStringSchema()), producerProps)); // 执行作业并等待任务完成 env.execute("Kafka to Flink to Kafka Demo"); } } ``` 在上述代码中,首先通过FlinkKafkaConsumer创建一个从Kafka中读取数据的数据流,然后通过FlinkKafkaProducer创建一个将数据写入到Kafka中的数据流。注意,需要为消费者和生产者配置正确的Kafka集群地址和主题名称。 以上就是一个简单的使用FlinkKafka数据写入到另一个Kafka集群的示例。当然,实际应用中还需要考虑更多的业务需求和数据转换操作。希望对您有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值