最优二叉搜索树 (dp)

本文介绍如何构建最优二叉搜索树,基于概率分布调整节点位置以最小化查询次数。通过动态规划策略,保持中序遍历序列不变,确保大概率节点靠近根部,类似于哈夫曼编码的贪心思想。文章包含详细思路和实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

给n个节点以及每个节点的将要被查询的概率pi,然后把它补充成一个满二叉树,用来补充的节点有n+1个,即di ,每个 di 也有一个查询的概率 qi 。构造最优的二叉搜索树,使总的查询次数最少。

最优二叉搜索树:我的理解是,必须保持原二叉树的中序遍历序列不变的前提下,通过将大概率节点尽量排到接近根的位置,使得总查询次数最少的树。它根哈夫曼编码有相似之处,就是贪心的使大概率节点接近树根,但是它不能够改变原树的中序遍历稳定结构。

思路:

因为最优二字,使用的是dp的思想,把整棵树分成若干子树,其子树也是最优二叉搜索树,满足最优子结构。由这些子树组成得到的一棵树即最终的最优二叉搜索树。详见代码。

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int MAXN=1000+10;
const double INF=1e9+7;
int n;
double p[MAXN];//每一个节点的查找概率
double q[MAXN];//伪关键字的搜索概率
double dp[MAXN][MAXN];//dp[i][j] 从节点i到节点j构成的最优查找树的PH值的最小值
int root[MAXN][MAXN];//root[i][j] 从节点i到节点j构成的最优查找树的根节点
double sum[MAXN][MAXN];//sum[i][j] 区间i到j的的区间概率和
void solve()
{
    for(int len=1; len<=n; len++)
    {
        for(int i=1; i<&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值