【u021】广义斐波那契数列

Time Limit: 1 second
Memory Limit: 128 MB

【问题描述】

广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。


【输入格式】

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

【输出格式】

输出包含一行一个整数,即an除以m的余数。

【数据规模】

Sample Input1

1 1 1 1 10 7







Sample Output1

6


【样例说明】

数列第10项是55,除以7的余数为6。

【题解】
那个an到an-k的关系你可以代入一个k=1来验证。
然后ci,di都可以迭代出来。
c1=p;
d1=q;
最后得到c29999和d2999.
这样我们可以不断的缩减n的规模。即如果30001就直接将f[30001]存在f[1]中。

【代码】
#include <cstdio>

__int64 p, q, a1, a2, n, m;
__int64 f[40000];

int main()
{
	scanf("%I64d%I64d%I64d%I64d%I64d%I64d", &p, &q, &a1, &a2, &n, &m); //输入数据。直接输入64位的就可以了。
	f[1] = a1 % m;
	f[2] = a2 % m;
	f[3] = (p*f[2] + q*f[1]) % m;//先推出f[1],f[2],f[3]。
	__int64 c, d;
	c = p;
	d = q;
	for (int i = 2; i <= 29999; i++)//进行迭代 得出c29999和d29999
	{
		__int64 tempc, tempd;
		tempc = (p*c + d)%m;
		tempd = (q*c) %m;
		c = tempc;
		d = tempd;
	}
	while (n > 30000)//根据得到的东西不断地缩减n的规模。
	{
		n -= 30000;
		f[1] = (c*f[2] + d*f[1]) %m;
		f[2] = (c*f[3] + d*f[2]) % m;//可以看到f[1],f[2],f[3]之前都已经取得了
		f[3] = (p*f[2] + q*f[1]) % m;//然后得到f[3]就可以了。
	}
	for (int i = 4; i <= n; i++)//剩下的已经小于30000了。可以通过迭代直接得出。(不会超时了)
		f[i] = (p*f[i - 1] + q*f[i - 2]) % m;
	printf("%I64d", f[n]);//最后直接输出答案。
	return 0;
}




转载于:https://www.cnblogs.com/AWCXV/p/7632286.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值