【题目链接】:http://codeforces.com/problemset/problem/128/C
【题意】
让你一层一层地在n*m的网格上画k个递进关系的长方形;(要求一个矩形是包含在另外一个矩形里面的);
问你有多少种方案;
【题解】
可以发现方案等同于在长和宽上各取2*k条直线的方案;
即C(n−1,2∗k)∗C(m−1,2∗k)
这样在整个n*m的方格上,就能取出k个矩形啦
这里之所以要减1,是因为两端不能算;(不能触碰到边缘上的点);
预处理出组合数就可以了;
会爆int;
【Number Of WA】
1
【完整代码】
#include <bits/stdc++.h>
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define LL long long
using namespace std;
const int N = 2100;
const LL MOD = 1e9+7;
LL c[N][N],n,m,k;
int main(){
rep1(i,1,2000){
c[i][0] = c[i][i] = 1;
}
rep1(i,1,2000){
rep1(j,1,i-1)
c[i][j] = (c[i-1][j]+c[i-1][j-1])%MOD;
}
cin >>n >> m >>k;
cout << c[n-1][2*k]*c[m-1][2*k]%MOD << endl;
return 0;
}