【题目链接】:http://hihocoder.com/problemset/problem/1298
【题意】
【题解】
用欧拉筛法;
能够同时求出1..MAX当中的所有质数和所有数的欧拉函数的值;
基于
以下理论;
如果
①
n=p^k;这里p是某个质数;
(则只有p的倍数和n是不互质的)
则
phi[n]=pk−1−(pk/p−1)=(p−1)∗pk−1
②
n为质数;
phi[n] = n-1
③
若n和p互质;则
phi[n∗p]=phi[n]∗phi[p]
根据上面那3个结论;
①若i为p的倍数;
则phi[i*p]=phi[i]*p;
因为若i是p的倍数;
则
i可以表示为p^k*m
这里m是其他质数的乘积
显然p^k和m互质
则
phi[i] = phi[p^k]*phi[m] = (p-1)*p^(k-1)*phi[m]
phi[i*p]
=phi[p^(k+1)*m]
=phi[p^(k+1)]*phi[m]
=(p-1)*p^k*phi[m]
=(p-1)*p^(k-1)*phi[m]*p
=phi[i]*p
②若i不是p的倍数;
则i和p互质
则phi[i*p]=phi[i]*(p-1);
这里会枚举i和质数p;
容易联想到欧拉筛法;
在做素数筛法的时候顺便把欧拉函数也求出来就好;
【Number Of WA】
0
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 5e6+100;
const int MAX = 5e6;
bool iszs[N];
vector <int> zsb;
int phi[N],l,r;
int main()
{
ios::sync_with_stdio(false),cin.tie(0);//scanf,puts,printf not use
ms(iszs,true);
rep1(i,2,MAX)
{
if (iszs[i])
{
zsb.pb(i);
phi[i] = i-1;
}
int len = zsb.size();
rep1(j,0,len-1)
{
int t = zsb[j];
if (i*t>MAX) break;
iszs[i*t] = false;
if (i%t==0)
{
phi[i*t] = phi[i]*t;
break;
}
else
phi[i*t] = phi[i]*(t-1);
}
}
cin >> l >> r;
int ans = l;
rep1(i,l+1,r)
if (phi[ans]>phi[i])
ans = i;
cout << ans << endl;
return 0;
}