- 先放上线性筛的代码。
for (int i = 2; i <= n; ++i)
{
if (!vis[i]) pri[++pr] = i;
for (int j = 1; j <= pr; ++j)
{
if (1ll * pri[j] * i > n) break;
vis[pri[j] * i] = true;
if (i % pri[j] == 0) break;
}
}
- 其实去掉下面这行代码就和一般的筛法差不多了:
if (i % pri[j] == 0) break;
证明直接引用吧:
pri[] p r i [ ] 数组中的素数是递增的,当 i i 能整除 ,那么 i×pri[j+1] i × p r i [ j + 1 ] 这个合数肯定被 pri[j] p r i [ j ] 乘以某个数筛掉。
因为 i i 中含有 , pri[j] p r i [ j ] 比 pri[j+1] p r i [ j + 1 ] 小,即 i=k×pri[j] i = k × p r i [ j ] 。
那么 i×pri[j+1]=(k×pri[j])×pri[j+1]=k′×pri[j] i × p r i [ j + 1 ] = ( k × p r i [ j ] ) × p r i [ j + 1 ] = k ′ × p r i [ j ] 。
接下去的素数同理,所以不用筛下去了。
因此,每个合数只会被它的最小质因子筛去。时间复杂度 O(n) O ( n ) 。
- 接下来使用线性筛求 φ(n) φ ( n ) 。
inline void solve()
{
for (int i = 2; i <= n; ++i)
{
if (!vis[i]) pri[++pr] = i, phi[i] = i - 1;
for (int j = 1; j <= pr; ++j)
{
if (1ll * pri[j] * i > n) break;
int tmp = pri[j] * i;
vis[tmp] = true;
if (i % pri[j] == 0)
{
phi[tmp] = phi[i] * pri[j];
break;
}
phi[tmp] = phi[i] * (pri[j] - 1);
}
}
}
- 容易知道:
- 若 n n 为质数,。
- φ(n) φ ( n ) 为积性函数,若 n,m n , m 互质, φ(nm)=φ(n)×φ(m) φ ( n m ) = φ ( n ) × φ ( m ) 。
- 实际上就对应代码中 i i 为质数 和 的情况了。
- 我们设 n=∏i=1mpqii(pi为n的质因子) n = ∏ i = 1 m p i q i ( p i 为 n 的 质 因 子 ) ,则 φ(∏i=1mpqii)=∏i=1m(pi−1)pqi−1i φ ( ∏ i = 1 m p i q i ) = ∏ i = 1 m ( p i − 1 ) p i q i − 1 。
- 那么若
i%pri[j]=0
i
%
p
r
i
[
j
]
=
0
,令
φ(i)=φ(pri[j]k×∏i=1mpqii)=(pri[j]−1)pri[j]k−1×∏i=1m(pi−1)pqi−1i φ ( i ) = φ ( p r i [ j ] k × ∏ i = 1 m p i q i ) = ( p r i [ j ] − 1 ) p r i [ j ] k − 1 × ∏ i = 1 m ( p i − 1 ) p i q i − 1∴φ(i×pri[j])=φ(pri[j]k+1×∏i=1mpqii)=(pri[j]−1)pri[j]k×∏i=1m(pi−1)pqi−1i ∴ φ ( i × p r i [ j ] ) = φ ( p r i [ j ] k + 1 × ∏ i = 1 m p i q i ) = ( p r i [ j ] − 1 ) p r i [ j ] k × ∏ i = 1 m ( p i − 1 ) p i q i − 1
- 所以 φ(i×pri[j])=φ(i)×pri[j] φ ( i × p r i [ j ] ) = φ ( i ) × p r i [ j ] ,得证剩下一种情况。