零知识证明
文章平均质量分 96
AdijeShen
密码学入门中,/wiːtʃæt/:shenghua-adije
展开
-
椭圆曲线介绍(三):椭圆曲线密码学,ECDH和ECDSA
本文是椭圆曲线介绍中的第三篇:ECDH和ECDSA。在之前的博客中已经说明了椭圆曲线是什么,并证明了椭圆曲线作为群的性质。然后我们将椭圆曲线限定到有限域中。通过这种限制,椭圆曲线中的点可以生成循环子群。后面又介绍了base point,order,cofactor这些术语的概念。最后提出了椭圆曲线上面的离散对..........翻译 2022-05-15 16:04:54 · 3348 阅读 · 0 评论 -
椭圆曲线介绍(二):整数域上面的椭圆曲线以及离散对数问题
介绍了整数域的椭圆曲线的概念,以及当中的乘法子群,cofactor等概念。翻译 2022-04-23 17:02:37 · 1336 阅读 · 0 评论 -
PLONK电路如何构造,PLONK例子
PlonK : Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge。零知识证明协议Plonk(PLONK)的个人笔记,主要讲了 copy constraint 和gate constraint如何构造。原创 2022-03-08 15:41:19 · 1879 阅读 · 12 评论 -
SNARK超详细解释,从GGPR13到Groth16
初学零知识证明,准备从SNARK开始入手,还是自己做个整理会印象深刻一些。细节我还没有深究,目前看来GGPR13是最先提出SNARK这个框架的工作,而Groth16则是目前效率表现最好的SNARK方案。话说Craig Gentry大佬也太牛了吧,搞不止是全同态加密的鼻祖,这边SNARK的提出原来也有他的关系啊。原创 2021-12-31 10:52:42 · 6469 阅读 · 7 评论 -
椭圆曲线介绍(一):实数上面的椭圆曲线
简单介绍了密码学上ECC,椭圆曲线的基本性质,以及使用python绘制椭圆曲线和进行椭圆曲线上计算的方法。翻译 2021-12-24 17:23:43 · 3034 阅读 · 0 评论 -
零知识证明从0到1,ZK简介
梳理了ZK的基本概念,给出了Completeness,Soundness,Zero-knowledgeness的定义和证明方法。整理SNARK的框框;BulletProof、SNARK、STARK的区别;ZK如何给区块链做扩容。原创 2021-12-21 15:35:15 · 13018 阅读 · 0 评论