数论-莫比乌斯反演
数论只会GCD
研二在读
展开
-
HDU 1695 莫比乌斯反演
莫比乌斯反演对于定义在非负整数上的两个函数F(x), f(x) : 若 F(n)=∑d|nf(d)F(n) = \sum_{d | n} f(d) 则f(n)=∑d|nu(d)F(nd) (1)f(n) = \sum_{d | n} u(d)F(\frac{n}{d}) (1) 其中:u(d)u(d)就是莫比乌斯函数, 它的定义如下 u(d)=⎧⎩⎨1,(−1)k, 0,d=1d=p1p2p原创 2017-03-10 15:24:53 · 507 阅读 · 0 评论 -
HDU 6053 莫比乌斯反演
那道题想到枚举1e5以内的质因子, 但是会重复 然后队友提醒了mobius反演, 果然还是太菜了啊题解首先, 题目提到任意区间满足条件, 也就是gcd(b[1], b[2], b[3]…b[n]) >= 2 就行了, 很容易得出总的b数量为 sum=∏i=1na[i]sum = \prod_{i = 1}^n a[i] 而其中不满足条件的就是gcd(b[1], b[2]原创 2017-07-30 16:06:04 · 577 阅读 · 0 评论 -
51nod 1238 杜教筛
传送门:51nod 1238题意求G(N)=∑i−1N∑j=1Nlcm(i,j) G(N) = \sum_{i - 1}^N\sum_{j=1}^Nlcm(i, j) 题解首先G(N)=∑i=1N∑j=1Nlcm(i,j)=2∑i=1N∑j=1ilcm(i,j)−∑i=1Nlcm(i,i)=2∑i=1Ni∑d|i∑u=1idu[gcd(u,id)=1]−N(N+1)2=2∑i=1Ni∑d|iidϕ原创 2017-08-07 16:37:22 · 829 阅读 · 0 评论 -
HDU 5608 莫比乌斯反演 + 莫比乌斯函数前缀和
传送门: HDU 5608 题解: 令 G(n) = n ^ 2 - 3 * n + 2 先反演得:f(n)=∑d|nG(d)∗u(nd)f(n) = \sum_{d|n}G(d) * u(\frac{n}{d})令: A(n)=∑i=1nf(i)A(n) = \sum_{i = 1}^nf(i) 则:A(n)=∑i=1nf(i)=∑i=1n∑d|iG(d)∗u(id)A(n) = \sum_原创 2017-08-06 18:15:37 · 1269 阅读 · 3 评论