自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(342)
  • 资源 (431)
  • 收藏
  • 关注

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第3题_个性化歌单推荐系统_300分(十一)

假设你是音乐服务的开发者,为了提高用户体验需要解决推荐歌单的同质化问题,保证推荐给用户的所有歌单不包含相同歌曲的。给定一个包含N个歌单和M条歌单重复记录,每个歌单用一个从1到N的整数编号,歌单重复记录包含两个歌单的ID,表示两个歌单有相同的歌曲。你的任务是对歌单进行合并,找出合并后的最小歌单数量,合并的歌单中不能有相同的歌曲。

2025-01-07 00:15:00 591

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第2题_公司园区里的建筑群_200分(十)

某公司基地园区很大,里面有N个建筑,依次编号为1到N,通过M条路将这些建筑连接在一起,这N个建筑根据之间的距离,被分为不同的建筑群。云小核喜欢饭后散步,并用步数计算了每条路的长度。经过一段时间的散步,云小核发现了一个规律,两个建筑群间最近的两个建筑之间,步数大于K步。两个建筑群之间,可能没有路。云小核把每条路的步数给了你,请你计算园区里有多少个建筑群?

2025-01-06 00:15:00 550

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第1题_最强大脑游戏_100分(九)

某最强大脑游戏要求:选手在一个整数序列中(整数取值为[1, 10]),自行去掉K个整数,得到一个新的整数序列,-使得整数序列左到右拼接起来后,得到的整数值最大。那么假设你是优秀的选手,在给定这个整数序列之后,你能够得到的最大整数值是多少?

2025-01-05 00:15:00 406

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第3题_PCB印刷电路板布线_300分(八)

在PCB印刷电路板设计中,器件之间的连线需要避免线路的阻抗值增大、而且赛件之间还有别的器件和别的干扰源,在布线时我们希望受到的干扰尽量小。现将电路板简化成一个M×N的矩阵,每个位置(单元格)的值表示其源干扰度。如果单元格的值为0,表示此位置没有干扰源;如果单元格的值为非0,则表示此位置是干扰源,其值为源干扰度。连线经过干扰源或干扰源附近会增加连线的总干扰度。位置A[x, y]的干扰源的源干扰度为d(d>0),则连线的干扰度计算如下:1、若连线经过位置A[x, y],则其总干扰度会增加d;

2025-01-04 00:15:00 814

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第1题_拔河比赛队员选拔_100分(八)

某团队近期需要组织一支队伍参加拔河比赛,团队共有队员n人,比赛队员人数要求为m人,n>m,n个队员按编号,1到n的顺序参加k轮力量测试,每轮的测试成绩用正整数表示。根据n个队员的力量测试成绩选择比赛队员m人,先选择k轮测试中最好成绩最大的队员,若有多人的最好成绩相等,则优先选择其中第二好成绩最大的队员,依次类推,最后若还有相等的情况,则优先选择编号较小的队员。每个人只能被选择一次。

2025-01-03 00:15:00 358

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第2题_公司班车上车点规划_200分(七)

某公司基地搬迁到新地点之后,新规划了一条班车路线,在这条路线上会经过N个小区,计划在这些小区中挑选出M个作为上车点,小区的位置可以用一维坐标上的点来表示,小区到上车点的距离为两个坐标点差值的绝对值。现在给定N个小区的位置,即一维坐标上的整数点:x1、x2、…、xN $ ,我们希望所有小区到最近上车点的距离总和尽可能小,请计算这个最大值能够是多少?当该小区被作为上车点,该小区到上车点的距离为0。

2025-01-02 00:15:00 286

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第2题_微服务发布时长_200分(六)

部署发布时,通常需要部署所有的现网局点。局点的部署过程存在依赖关系,因为某些局点需要等其他的局点部署完成后,才能开始部署。另外这些局点由于网络或地理位置的原因,所花费的部署时间有可能是不同的。给定一个大小为n的数组region存储局点之间的部署依赖关系,其中region[i]是第i个局点的依赖局点,0

2025-01-01 17:38:04 476

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第3题_订单取餐顺序_300分(五)

肯德基店销售炸鸡、薯条、可乐三种实物,准备三种食物的速度一样,且三种食物同时制作;三种食物同时制作,按订单顺序进行分发食物。现在有N个订单,每个订单用连续三位数组元素表示,数组的元素是对应食物的份数。N最大为100万,每个订单里每份食物最多100万份。请计算N个订单的取餐顺序,如果多个订单可以同时取餐,按订单号从小到大排序。

2024-12-31 00:15:00 494

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第1题_水果忍者_100分(四)

“水果忍者”,请计算此局游戏最高得分。

2024-12-30 00:15:00 735

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——中等、较难和困难题目Python3答案(三)

【代码】牛客网|华为在线编程(最新)——中等、较难和困难题目Python3答案(三)

2024-12-29 00:15:00 216

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——中等、较难和困难题目Python3答案(二)

【代码】牛客网|华为在线编程(最新)——中等、较难和困难题目Python3答案(二)

2024-12-27 14:59:41 221

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——中等、较难和困难题目Python3答案(一)

【代码】牛客网|华为在线编程(最新)——中等、较难和困难题目Python3答案(一)

2024-12-27 14:35:19 533

原创 人工智能|预训练大模型——混合专家模型(MoE)

MoE,全称为Mixed Expert Models,混合专家模型,简单理解就是将多个专家模型混合起来形成一个新的模型。在理解MOE之前,有两个思想前提,可以帮助我们更容易地理解MOE架构。一是在现实生活中,如果有一个包括了多个领域知识的复杂问题,我们该使用什么样的方法来解决呢?最简单的办法就是先拆分任务到各领域,然后把各个领域的专家集合到一起来攻克这个任务,最后再汇总结论。这个思想可以追溯到集成学习,MoE和集成学习的思想异曲同工,都是集成了多个模型的方法,区别在于集成学习不需要将任务分解为子任务。

2024-12-19 15:24:30 1462

原创 科研学习|论文解读——智能体最新研究进展

Can Modern LLMs Act as Agent Cores in Radiology~Environments?Achieving Collective Welfare in Multi-Agent Reinforcement Learning via Suggestion SharingA systematic review of norm emergence in multi-agent systemsAgent-based Video TrimmingGROOT-2: Weakly Supe

2024-12-19 14:44:45 742

原创 科研学习|论文解读——顶会论文中多模态数据融合成果

该论文提出了一种名为“逐步融合”(Progressive Fusion)的多模态集成方法,旨在缓解早期融合和后期融合的缺点。传统多模态集成方法将各模态的特征在不同阶段进行融合,但这可能导致信息损失。逐步融合通过向后连接,将后期融合表示引入早期层级,使模型逐步完善融合后的多模态表示,从而增强表达能力。实验表明,该方法在情感检测、媒体分析等任务中有效提高了模型的性能和鲁棒性。本研究开发了一个平衡多模态学习框架(BalanceMLA),聚焦于音视频多任务学习中的模态不平衡问题,特别是语音与情感识别。

2024-12-18 15:19:57 1438

原创 人工智能|预训练大模型——思维链详解[Chain of Thought, CoT]

Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,对于复杂问题尤其是复杂的数学题大模型很难直接给出正确答案。如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理(symbolic reasoning)。COT通过要求模型在输出最终答案之前,显式输出中间逐步的推理步骤这一方法来增强大模型的算数、常识和推理能力。简单,但有效。2022 年,在 Google 发布的论文。

2024-12-17 16:46:31 4009

原创 科研学习|研究方法——访谈法

访谈,就是指以,调查者根据调查需要,并根据回答,以此用于学术研究的方法。与文献研究法、数据等研究方式不同,,整个研究工作都需要围绕着人进行,是一项直接从受众身上得到所需数据或结论,并作用于研究对象的方法。多数情况下,访谈法更多地被应用于心理学研究,但随着研究需要的扩大,现在有许多其他学科也将访谈法视为重要的研究方法。等分类。

2024-12-13 08:00:00 1949

原创 环境配置——Win10更新后严重卡顿?教你几招快速解决系统卡顿问题

通过检查并优化启动项、清理系统垃圾文件、更新驱动程序、调整虚拟内存以及检查并修复系统文件等方法,可以有效解决Windows 10更新后出现的系统卡顿问题。定期进行系统维护和备份,保持系统和软件更新,必要时进行硬件升级,能够进一步提高系统的稳定性和性能。

2024-12-12 00:15:00 3020

原创 人工智能|自然语言处理——机器翻译评价指标Bleu和Rouge

​在机器翻译任务中,BLEU 和 ROUGE 是两个常用的评价指标,BLEU 根据精确率(Precision)衡量翻译的质量,而ROUGE 根据召回率(Recall)衡量翻译的质量

2024-12-11 10:23:51 1233 1

原创 编程语言|python3——GUI编程

1.python提供了多个图形开发界面库tkinter(import tkinter) :Tkinter 模块(Tk 接口)是 Python 的标准 Tk GUI 工具包的接口wxPython(import wx) :wxPython 是一款开源软件,是 Python 语言的一套优秀的 GUI 图形库Jytyhon(import sys sys.path.append(a.jar)

2024-12-03 00:30:00 2162 2

原创 环境配置|联想G510笔记本电脑换屏——操作步骤详解

前一段时间,电脑放在包中不知道什么原因,电脑屏幕发生了挤压,屏幕出现了漏液的情况,右下角出现了两个黑色的圆圈,之后查询了一下换屏费用... ... 果断选择自行淘宝购买(比较便宜,本人对屏幕的分辨率并没有什么太高要求)并进行安装,现将整个的安装过程分享如下:1.购买对应的笔记本液晶屏幕2.拔掉电源线,卸除笔记本电池一来是为了硬件的安全,二来是为了更加方便的拆除屏幕的外壳3.

2024-12-02 07:00:00 5225

原创 科研学习|论文解读——基于旅游知识图谱的游客偏好挖掘和决策支持

目前,旅游管理研究的重点是通过对异构用户生成的内容进行广泛分析,来理解旅游偏好的波动,制定有针对性的发展策略。然而,鉴于在线景点评论涉及过多的混合和无形维度,广泛使用的无监督文本挖掘可能是不完整的或不准确的。此外,现有文献通常局限于几个旅游目的地和起源地的某些类型的景点,很难保证具有全面的洞察力。为了克服这些局限性,本研究提出了一种新的知识图谱驱动框架,该框架涉及旅游知识图谱(TKG)的系统构建和深入的研究与推理。

2024-12-01 23:06:24 1138

原创 人工智能|计算机视觉——微表情识别(Micro expression recognition)的研究现状

MEGC2019中的四篇工作,虽然使用的网络结构各不相同,但思路类似,都使用了微表情的Apex帧表示整段表情的特征。总体而言,关于Apex的光流是比较好的特征形式,而Transfer learning+Domain Adaptation对于模型的效果提升也是巨大的。

2024-11-19 23:19:41 2807 1

原创 科研学习|论文解读——Past Present and Future of Industry4.0 a systematic literature review

工业4.0的过去、现在和将来——系统性文献综述和研究议程提案

2024-11-16 00:15:00 1171

原创 人工智能|预训练大模型——常用大模型的原理介绍

这些模型使用表中的超参数构建。这三个模型使用相同的数据和词汇表进行相同的训练(除了批量大小),feed-forward size dff始终为dmodel的4倍,注意力头大小始终为256。在训练期间,数据集不按其大小进行采样,而是质量较高的数据集采样更频繁,因此CommonCrawl和Books2数据集在训练期间采样不到一次,但其他数据集采样2-3次。虽然具体的训练细节没有公布,但一个有意思的事情是,在GPT4中的技术报告中,上述表格中的实验证明RLHF基本不起作用,甚至有些情况会降低效果。

2024-11-15 16:45:25 1247

原创 人工智能|预训练大模型——基于Ollama+AnythingLLM搭建本地私有知识库系统

AnythingLLM 是 Mintplex Labs 开发的一款可以与任何内容聊天的私人ChatGPT,是高效、可定制、开源的企业级文档聊天机器人解决方案。它能够将任何文档、资源或内容片段转化为大语言模型(LLM)在聊天中可以利用的相关上下文。AnythingLLM 支持多种文档类型(PDF、TXT、DOCX等),具有对话和查询两种聊天模式。

2024-09-26 22:12:38 3634

原创 人工智能|预训练大模型——全球医疗大模型

谷歌和DeepMind的科研人员在《自然》杂志上发表了一项研究,根据其研究结果,一组临床医生对谷歌和DeepMind团队的医疗大模型Med-PaLM回答的评分高达92.6%,与现实中人类临床医生的水平(92.9%)相当。

2024-09-17 15:58:32 2987

原创 人工智能|集成学习——混合专家模型 (MoE)

与稠密模型相比,预训练速度更快与具有相同参数数量的模型相比,具有更快的推理速度需要大量显存,因为所有专家系统都需要加载到内存中在微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行指令调优具有很大的潜力。为了实现大模型的高效训练和推理,有的是从模型底层下手,比如直接改变底层模型架构,将原来的Transformer架构改成近期新出的基于状态空间模型(SSM)的mamba架构;

2024-09-12 11:21:44 1923 2

原创 科研学习|论文解读——OceanGPT:用于海洋科学任务的大型语言模型

•海洋科学语料库包含多个领域和主题 ,每个主题都有其独特的数据特征和模式。为了有效地模拟和获取这些数据 ,我们提出了 一种领域指令生成框架DOINSTRUCT。通过多代理合作获取海洋指令。每个代理都被视为特定领域(主题)的专家 ,并负责生成相应的数据。它不仅保证了数据的专业性和准确性 ,而且允许并行高效地生成大量数据。•我们根据海洋学专家的专业知识 ,将海洋科学中的数据手动分类为五个主要的海洋主题:科学和研究、资源和开发、生态与环境、技术和工程、生活和文化等。

2024-09-03 16:11:52 1403 6

原创 编程语言|Python——为什么0.1+0.2≠0.3(深入理解Python中的浮点数运算)

在python中可以采用采用round()函数,对数据进行处理。round()函数的格式:round(x, d), 其中x表示需要被处理的数据,d表示要返回的小数位数,即round(x, d)代表返回参数x的四舍五入的有 d 位小数的一个数字。d=0表示取整,d=1表示要返回一位小数,以此类推。此外,round()会自动四舍五入。

2024-08-01 10:51:42 1221 1

原创 人工智能|机器学习——Aho-Corasic多模匹配算法的学习、理解和应用(Python)

2.1 Aho-Corasick算法的定义Aho-Corasick(简称为AC自动机),是一种基于前缀的,使用了确定有限自动机(DFA)原理的,字符串多模匹配算法。什么是DFA?DFA也就是确定有限自动机,英文全称是Deterministic Finite Automaton。具体的细节介绍,可以参照百度百科、维基百科,以及《算法导论》之类的算法书。在这里,我们尝试用通俗的语言和图示来解释一遍。首先,什么是自动机(A)。自动机就是一个代码块。这段代码块只做一件事,那就是接收输入值和状态值输出。

2024-07-28 10:56:51 866

转载 环境配置|Neo4j数据库——Neo4j安装与配置以及JDK安装与配置教程(详细)

JDK=17 Neo4j=5.15(win10也可以)由于是基于Java的图数据库,运行Neo4j需要启动JVM进程,因此必须SE的JDK。配置 JDK环境,为以后能适应Springboot,请选择最低JDK1.8的环境。

2024-07-17 22:35:23 2604

原创 环境配置|PyCharm——Pycharm本地项目打包上传到Github仓库的操作步骤

通过Ctrl+Alt+S快捷组合键的方式,打开设置,导航到版本控制一栏中的Git,在Git可执行文件路径中,输入Git.exe。按照下图顺序,依次点击,完成测试。输出如图标④的结果,即可完成测试。输出下图结果,配置Git成功,如本地未安装Git,需自行安装。下图栏中不输入任何配置信息,直接点击测试,如本地端有安装并配置Git,也能够自动弹出Git默认安装路径。点击测试即可。

2024-07-16 15:40:24 879

原创 人工智能|深度学习——常用的神经网络优化算法(从梯度下降到 Adam!)

优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x)。模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x)。比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经网络模型时起到主要作用。在有效地训练模型并产生准确结果时,模型的内部参数起到了非常重要的作用。这也是为什么我们应该用各种优化策略和算法,来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值。

2024-07-15 11:44:18 1139

原创 心理学|心理咨询概论——心理咨询概论单科作业(中科院)

咨询结束后,心理咨询师与求助者的关系也应终止┋C、咨询师对咨询效果的预期,既不能过分保守,也不能冒进┋D、心理咨询师不介入、不解决求助者生活中的具体问题。、以下关于心理咨询师需要具备的一些个人特质(即对人的心理活动的感受性、丰富的想象力、思维的敏捷性与灵活性)的叙述,正确的是( )。、整合身体、情感、认知、情境和行为系统┋B、研究和实践的整合┋C、各种心理疗法的理论和技术的整合┋D、个人和职业的整合。、个体未表达出来的情感,包括悔恨、愤怒、怨恨、痛苦、焦虑、悲伤、罪恶、遗弃感等在完形疗法中称为( )。

2024-07-10 18:16:37 604

原创 心理学|变态心理学&健康信息学——变态心理学与健康心理学单科作业题(中科院)

健康的心理活动是一种处于动态平衡的心理过程┋B、它涵盖一切有利于个体生存与发展的心理活动┋C、它是围绕心理健康常模,在一定范围内上下波动的相对平衡过程┋D、它在某一时间段内,展现着自身的正常功能。、精神分裂症患者在言谈或书信中,其单独语句在语法结构上是正确的,但主题之间、语句之间缺乏内在意义上的连贯性和应有的逻辑性,这种症状是( )、在应对压力过程中个体变得敏感、脆弱,即使是日常微小的困扰,都可引发个体强烈的情绪反应,说明其处于“一般适应征候群”的( )

2024-07-03 14:58:55 690

原创 心理学|人格心理学——人格心理学单科作业(中科院)

人格的统合性体现了人格的组织功能、匹配功能和健康功能┋B、人格决定一个人的生活方式,甚至有时会决定一个人的命运┋D、人格的内在的统一性遭到破坏,就会产生心理冲突,出现各种适应困难。、霍尼所说的( )是指个体在此时此地所表现出来的一切存在的总和,是别人所能观察到的客观存在,独立于个体的自我概念和知觉。、根据卡特尔的理论,在根源特质中,( )是由遗传决定的特性,决定个体对情境做出反应的速度、能量、脾气等。、人格决定一个人的生活方式,甚至有时会决定一个人的命运,反映的是人格的( )

2024-07-01 12:15:49 769

原创 心理学|发展心理学——发展心理学单科作业(中科院)

心理活动的随意机能的形成和发展┋B、心理机能相互作用并重新组合┋C、心理活动抽象概括机能的形成和发展┋D、心理活动越发突出个性特征。、心理发展是由遗传因素决定的┋B、心理发展的过程是遗传素质的自然显现过程┋C、环境只能促进或延缓遗传素质的自我显现而已。、在有指导的情境下,儿童借助成人的帮助所达到的解决问题的水平与在独立活动中所达到的解决问题的水平之间的差距。、在有指导的情境下,儿童借助成人的帮助所达到的解决问题的水平与在独立活动中所达到的解决问题的水平之间的差距。

2024-06-24 22:11:17 935

原创 心理学|社会心理学——社会心理学单科作业(中科院)

是一种与人交往的时候,觉得不舒服、不自然、紧张,甚至恐惧的情绪体验┋C、社交焦虑是一种消极的情绪体验┋D、为了回避导致社交焦虑的情境,个体通常是减少社交,选择孤独的生活方式。、在一项试验中,给被试呈现一组他人的面部照片,照片被呈现的次数不同,结果发现,照片呈现次数越多,被试越喜欢,这说明人际吸引受( )的影响。、态度转变是在沟通信息与接收者原有态度存在差异的情况下发生的,对于威信低的传递者,要引发最大的态度转变量,这种差异应该( )。、信息如果能唤起人们的畏惧情绪,一般有利于说服。

2024-06-24 21:38:45 552

原创 心理学|基础心理学——基础心理学单科作业(中科院)

能够感觉到的最小刺激强度叫下限┋C、能够忍受的刺激的最大强度叫上限┋D、下限和上限之间的刺激都是可以引起感觉的范围。、是人和动物心理的根本区别┋B、是自然进化的最高产物┋C、是物质发展最高阶段的产物┋D、是在觉醒状态下的觉知。、是人类智慧的根源┋B、人脑对输入的信息进行编码、储存和提取的过程┋C、过去的经验在头脑中的反映。、动机是在需要的基础上产生的┋C、动机是人活动的内部动力┋D、不同的活动可以由相同的动机引起。、是以词来标示和记载的┋B、是思维活动借以进行的单元┋C、是人脑对客观事物本质属性的反映。

2024-05-20 12:33:19 786

人工智能-大语言模型-基于200万条医疗数据对deepseek-r1进行微调且简单部署

简介: 本项目是基于200万条医疗数据进行微调,形成一个在医学方面具有极高专业性的可本地部署的大语言模型

2025-02-15

人工智能-大语言模型-基于deepseek 的OCR

DeepSeek OCR 是一个基于Deepseek AI模型的智能文字识别系统,旨在通过图像识别技术提取图像中的文本信息。该项目使用了 DeepSeek API 进行 OCR 处理,支持多种上传方式,包括文件上传和 URL 上传。

2025-02-15

人工智能-大语言模型-基于DeepSeek开发的Intellj Idea插件

如果你是第一次使用这个插件,可以按照以下步骤操作: 1.点击侧边栏的齿轮图标,或者打开 IntelliJ DEA 编辑器的 DeepSeek Coder设置选项。 2.点击申请链接免费获取一个 API KEY,将 API KEY填写到对应位置即可。 3.初始版本目前只支持聊天功能,后续将会开发更多功能。 完成这些步骤后你就可以开始体验 DeepSeek 大模型的强大功能了!

2025-02-15

人工智能-法律问答-基于知识图谱的林业法律法规问答

基于知识图谱的林业法律法规问答 Python 调用 nsq 消费者启动方式 启动lookup nsqlookupd 启动一个nsqd , 并指定lookup的地址 nsqd --lookupd-tcp-address=127.0.0.1:4160

2025-01-11

人工智能-迁移学习-基于知识库的问答系统 其中使用带注意力机制的对抗迁移学习做中文命名实体识别,使用BERT模型做句子相似度分析

基于知识库的问答系统。其中使用带注意力机制的对抗迁移学习做中文命名实体识别,使用BERT模型做句子相似度分析 本项目是基于知识库上做问答,首先使用带注意力机制的对抗迁移学习做中文命名实体识别(Cao EMNLP2019),然后再通过别名词典得到近义词,根据这些近义词查询Mysql数据库,得到一些三元组,这些三元组组中包括一些属性。我们先对属性与原问题进行直接字符串匹配进行查询,如不能直接匹配再使用bert做相似度计算进行属性映射,最后进行排序得到结果。整个实验原理参考论文,我把其中的模型进行了替换。

2025-01-01

人工智能-强化学习-基于强化学习的空战对抗

基于强化学习的空战对抗 利用值函数逼近网络设计无人机空战自主决策系统,采用epsilon贪婪策略,三层网络结构。 其中包含了无人机作为质点时的运动模型和动力学模型的建模。 由于无人机作战的动作是连续并且复杂的,本项目仅考虑俯仰角gamma(又叫航倾角)和航向角pusin的变化,并且离散的规定每次变化的幅度为10度,假定速度v为恒定值。根据飞机的运动模型,由俯仰角、航向角和速度可以推算出飞机位置的改变,即x,y,z三个方向的速度分量,在每一步中,根据这些分量变化位置position信息,posintion中的三个值为x,y,z坐标,是东北天坐标系下的坐标值。从坐标信息和角度信息以及速度信息,可以计算出两个飞机的相对作战态势state。 在上文中提到,我们的动作是仅对俯仰角和航向角进行改变,即增大,减少和不变,故两个角度的变化组合一共有3×3=9种动作。在每个态势下,都有9种动作可以选择,将这个态势下的9种动作将会产生的新的态势,作为网络的输入,网络的输出是9个数字,代表每个动作的值函数。 由于是无监督学习,故我们需要利用值函数的Bellman公式生成标签。本文利用时间差分思想,(时间差

2025-01-01

人工智能-对比学习-基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM

基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。 Algorithms Average prediction accuracy(%) Standard deviation 决策树(Decision tree) 93.3636% 0.043608 朴素贝叶斯(Naive Bayes) 93.2727% 0.062879 随机森林(Random forest) 93.3636% 0.059620 支持向量机SVM 96.1818% 0.046851

2024-12-17

人工智能-鸿蒙开发-使用鸿蒙ARKTS实现番茄钟的开发,基于API9

使用鸿蒙ARKTS实现番茄钟的开发,基于API9

2024-12-15

人工智能-预训练大模型-基于预训练模型 BERT 的阅读理解

基于预训练模型 BERT 的阅读理解 在这里,我们将使用来自 google 的预训练模型 bert 构建一个机器阅读理解系统,这是 NLP 深度学习的最新进展。 斯坦福问答数据集 (SQuAD) 是最早的大型英语阅读理解数据集之一。从模型的角度来看,输入以 Context / Question 对的形式出现,输出是 Answers:整数对,为 Context 中包含的答案文本的开头和结尾编制索引。第二届中文机器阅读理解评估研讨会(2018 年)发布了部分类似于 SQuAD 的数据集,我们在这个例子中使用了它。 该模型建立在 pytorch-transformers 之上,有助于将 BERT、GPT、GPT2 等预训练模型用于下游任务。该存储库包括用于多个 NLP 任务(包括问题解答)的各种实用程序和训练脚本。

2024-12-12

人工智能-预训练大模型-简洁易用版TinyBert:基于Bert进行知识蒸馏的预训练语言模型

简洁易用版TinyBert:基于Bert进行知识蒸馏的预训练语言模型 本项目是基于华为的TinyBert进行修改的,简化了数据读取的过程,方便我们利用自己的数据进行读取操作。 TinyBert的训练过程: 1、用通用的Bert base进行蒸馏,得到一个通用的student model base版本; 2、用相关任务的数据对Bert进行fine-tune得到fine-tune的Bert base模型; 3、用2得到的模型再继续蒸馏得到fine-tune的student model base,注意这一步的student model base要用1中通用的student model base去初始化;(词向量loss + 隐层loss + attention loss) 4、重复第3步,但student model base模型初始化用的是3得到的student模型。(任务的预测label loss)

2024-12-12

人工智能-开源情报-基于开源威胁情报AlienVault,排查IP地址及域名的恶意性

基于开源威胁情报AlienVault,排查IP地址及域名的恶意性 运行事例 usage: hot_ip.py --pcapfile=./out.pcap –d -c #数据包解析模式,对目的IP地址的恶意性进行排查 usage: hot_ip.py --IPfile=./iplist.txt -c #IP清单文件解析模式,排查清单中的IP地址的恶意性 usage: hot_ip.py --pcapf=./out.pcap -p #数据包解析模式,对域名地址的恶意性进行排查

2024-12-01

人工智能-开源情报-本项目致力于收集网上公开来源的威胁情报,主要关注信誉类威胁情报(如IP/域名等),以及事件类威胁情报

本项目致力于收集网上公开来源的威胁情报,主要关注信誉类威胁情报(如IP/域名等),以及事件类威胁情报 Ti_Collector为Threat Intelligence Collector,主要关注网上公开的信誉类威胁情报和事件类威胁情报。 信誉类威胁情报主要来源于一些安全社区的分享;事件类威胁情报主要来源于安全企业的咨询分享。 这些威胁情报数据通过爬虫手段,经分类处理后自动存入到数据库中,以构建自身的威胁情报库。 同时,我们提供一个捕获和查询本机DNS纪录中是否存在威胁行为的程序。

2024-12-01

人工智能-检索增强生成-利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

2024-11-19

人工智能-检索增强生成-基于BM25、BGE的检索增强生成RAG示例

基于BM25、BGE的检索增强生成RAG示例 1.1 服务器测试环境 实验环境:实体GPU服务器,NVIDIA RTX 4090 / 24GB,CentOS 7.9,Anaconda3-2019.03,CUDA 12.4 如果没有GPU服务器,可以租用AutoDL等平台的。服务器的租用及基础环节的安装这里就不赘述了

2024-11-19

人工智能-大模型-一个智能问答系统,能够自动将用户的自然语言问题转换成 SQL 查询,并以可视化形式展示结果

一个智能问答系统,能够自动将用户的自然语言问题转换成 SQL 查询,并以可视化形式展示结果 用户使用自然语言查询数据。基于 Python、MySQL 和 Milvus 构建,将用户的问题转换为 SQL 查询,安全地执行,并产生符合echarts的数据可视化呈现结果。

2024-11-15

人工智能-大语言模型-基于ChatGLM-6B + LoRA的Fintune方案

基于ChatGLM-6B + LoRA的Fintune方案 准备 显卡: 显存 >= 16G (最好24G或者以上) 环境: python>=3.8 cuda>=11.6, cupti, cuDNN, TensorRT等深度学习环境 pip3 install -r requirements.txt 其中requirements.txt中的安装包bitsandbytes 建议安装0.41.2.post2这个版本,以前的版本可能会提示报错: bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats 数据预处理 转化alpaca数据集为jsonl python cover_alpaca2jsonl.py \ --data_path data/alpaca_data.json \ --save_path data/alpaca_data.jsonl \ tokenization python tokenize_dataset_rows.py \ --jsonl_pa

2024-11-13

人工智能-大语言模型-基于Bert的预训练大语言推荐模型

基于Bert的预训练大语言推荐模型 基于Bert的预训练大语言推荐模型 基于Bert的预训练大语言推荐模型 下载后配置好环境即可直接使用

2024-11-13

人工智能-大语言模型-基于人工智能标记语言 (AIML)和开放域问答(WebQA)的深度智能对话模型

基于人工智能标记语言 (AIML)和开放域问答(WebQA)的深度智能对话模型 环境说明 Linux/Python2.7/PyCharm 安装依赖 $ pip2 install jieba $ pip2 install aiml $ pip2 install lxml $ pip2 install beautifulsoup4 $ pip2 install flask 运行流程 Working directory: chatbot-aiml-webqa/core $ cd chatbot-aiml-webqa/core $ python2 web/server.py (or $ nohub python2 web/server.py) > ...... > * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit) CURL: $ curl "0.0.0.0:5000/chat" -d "message=新闻" $ curl "0.0.0.0:5000/chat" -d "message=天气" $ curl "0.0.0

2024-11-05

人工智能-大语言模型-基于企业私有知识库的LLM大语言模型的智能客服机器人问答系统,支持私有化部署

基于企业私有知识库的LLM大语言模型的智能客服机器人问答系统,支持私有化部署 能力 1、专属 AI 问答系统 通过导入企业已有知识构建知识库,让 AI 机器人使用关联的知识库回答问题,快速构建企业专属 AI 问答系统。 2、一键接入模型 ChatWiki已支持全球20多种主流模型,只需要简单配置模型API key等信息即可成功接入模型。 3、数据自动预处理 提供自动分段、QA分段、手动输入和 CSV 等多种方式导入数据,ChatWiki自动对导入的文本数据进行预处理、向量化或 QA 分割。 4、简单易用的使用方式 ChatWiki采用直观的可视化界面设计,通过简洁易懂的操作步骤,可以轻松完成 AI 问答机器人和知识库的创建。 5、适配不同业务场景 ChatWiki为 AI 问答机器人提供了不同的使用渠道,支持H5链接、嵌入网站、桌面客户端等,可以满足企业不同业务场景使用需求。

2024-11-05

人工智能-大语言模型-基于大型语言模型的评论回复机器人

基于大型语言模型的评论回复机器人 本项目为一个基于大语言模型的视频评论回复系统,包含服务端脚本与移动端工程文件。其中服务端由一个负责生成回复的回复服务脚本与一个负责与移动端及目标网站通信的数据服务脚本组成;移动端则为 HarmonyOS 元服务形式,提供完整服务与桌面万能卡片。 文件结构 ├───client │───server ├───utils │ └───scripts 项目的主要程序文件存放在 client/ 与 server/ 下。其中 client/ 为移动端程序的 DevEco Studio 元服务工程项目,server/ 则包含了负责生成回复的 reply-server.py 与一个负责与移动端及目标网站通信的 data-server.py 组成。 文件夹 utils/ 包括一个工具脚本 compress_code.py,可以将代码缩进、换行全部删去变成一行紧密排列的文本,方便与 GPT-4 进行交流,向 AI 询问代码建议(GPT-4 对代码的理解能力远高于人类,不需要缩进、换行等)。

2024-11-05

人工智能-扩散模型-基于扩散模型stable diffusion的T恤图案设计和基于HR-VITON的虚拟试衣项目

基于扩散模型stable diffusion的T恤图案设计和基于HR-VITON的虚拟试衣项目 计算机视觉课程设计项目:基于Stable Diffusion的T-shirt图案设计和虚拟换衣技术 基本实现方法: Stable Diffusion结合Dreambooth实现文本指导下的T-shirt图案生成; 利用U2NET模型对人像和衣服掩码进行分割; 借鉴HR_VITON框架实现虚拟换衣。

2024-10-28

人工智能-机器学习-基于各种机器学习和深度学习的中文微博情感分析

基于各种机器学习和深度学习的中文微博情感分析 项目说明 训练集10000条语料, 测试集500条语料 使用朴素贝叶斯、SVM、XGBoost、LSTM和Bert, 等多种模型搭建并训练二分类模型 前3个模型都采用端到端的训练方法 LSTM先预训练得到Word2Vec词向量, 在训练神经网络 Bert使用的是哈工大的预训练模型, 用Bert的[CLS]位输出在一个下游网络上进行finetune。预训练模型

2024-10-24

人工智能-大模型-基于DPO算法微调语言大模型,简单好上手

基于DPO算法微调语言大模型,简单好上手 在使用之前请确保您已经按照格式准备了数据,下面需要修改以下路径,即可运行该项目,在dpo_train.py的run函数下: 注意file是一个json文件。 file = '' model_file = '' model_save_path = '' output_dir = '' 在命令行中: python dpo_train.py 后台启动该项目: ps: 在后台挂载启动,这样关了服务器代码还是在运行的,不会断掉。 nohub python dpo_train.py > train_log.log 启动tensorboard查看日志: 确保已经安装了tensorboard pip install tensorboard -i https://pypi.tuna.tsinghua.edu.cn/simple tensorboard --logdir='your path'

2024-10-21

人工智能-大模型-基于大模型的企业内部知识库和工具流系统,web界面,完全局域网内网部署(外网隔离)

基于大模型的企业内部知识库和工具流系统,web界面,完全局域网内网部署(外网隔离) 对于本项目,或者说该类型的应用场景,应该着眼于如下三个方面的深入开发: 1、文档智能 —— 更加智能的处理各种类型文档,尤其是复杂文档的ocr、layout解析等。本项目代码仓对应 backend/scholar/document process 2、RAG —— 不过这一块有很多优秀的开源项目,学术界目前进展也很蓬勃。本项目代码仓对应 backend/scholar 以上两块其实我理解行业会不断涌现出优秀的作业,大家借鉴就好,但第三点可能是需要致力于这个业务方向的同学特别思考的 3、符合信创要求的llm本地部署和加速方案 —— 有外网隔离要求的业务场景大部分可能都是国企、政务了,“信创”要求是早晚躲不过的……这方面我个人认为应该特别关注基于arm架构的cpp迁移方案,目前行业内也有不少开源方案可供参考。

2024-10-21

人工智能-大模型-基于大模型ChatGLM,微调方式为LORA,集SFT、RM、PPO算法为一体项目

基于大模型ChatGLM,微调方式为LORA,集SFT、RM、PPO算法为一体项目 要求 Python 3.8+ 和 PyTorch 1.13.1 Transformers、Datasets、Accelerate、PEFT 和 TRL protobuf、cpm_kernels 和 sentencepiece jieba、rouge_chinese 和 NLTK(用于评估) gradio 和 mdtex2html(用于 web_demo.py) 和强大的 GPU! 开始 数据准备(可选) 有关数据集文件格式的详细信息,请参阅查看。您可以使用单个文件或包含多个文件的数据集加载脚本来创建自定义数据集。data/example_dataset.json

2024-10-21

人工智能-大模型-基于外挂知识库的大模型问答

基于外挂知识库的大模型问答 主要流程 1.加载LLM、加载embedding模型、加载reranker模型 2.向量知识库构建、BM25知识库构建 3.多路召回与排序,包括bm25召回、bge召回、gte召回,然后使用bge-reranker进行精排,选取得分最高的top-3与问题同时作为输入到llm的上下文。并使用jieba分词对于问题进行分词,加入一层关键词判断,提高匹配精度,同时可根据关键词判断是否有答案。

2024-10-21

人工智能-大模型-基于大模型的高质量情感虚拟人系统

基于大模型的高质量情感虚拟人系统 基于大模型的高质量情感虚拟人系统(Gradio+FUNASR+ChatGLM2-6B+GPT-SOVITS+EAT+GFPGAN)

2024-10-21

人工智能-大模型-基于yolov4的老鼠位置检测,并且裁剪了模型大小

基于yolov4的老鼠位置检测,并且裁剪了模型大小 基于pytorch+cuda框架开发 总体框架使用yolov4 backbone使用ghost neck部分使用mobilenetv2的InvertedResidual替换卷积层 跟踪使用SORT(simple online realtime track) 模型由yolov4的240M->30M.Neck SPP部分不变.FPN部分减少了特征层层数.Head部分还暂未修改 跟踪只是基本的卡尔曼滤波+匈牙利匹配,匈牙利匹配是根据iou,这段刚开始准备.准备移植deep sort的马氏距离

2024-10-21

人工智能-大模型-一个基于大模型的口语对话顾问

一个基于大模型的口语对话顾问 本项目的目标是构建一个英语练习环境。 项目的目标是能够构造一个应用,你可以自由地和机器人围绕某个话题使用特定语言进行对话,机器人能够像真人一样,尝试了解你支支吾吾的表达中蕴含的意思,并且尝试引导你进行正确的表达,这些引导内容包括直接给出正确的表达,并且跟你确认你的意图是否和它猜测的一样。机器人也能够推动话题的发展,而不是被动的接收你的说辞。从而最终起到提高语言表达能力的作用。

2024-10-21

人工智能-大模型-一个基于大模型微调的中文医疗问答机器人应用

一个基于大模型微调的中文医疗问答机器人应用 运行 下载模型后,将config.py里的model_path更改为模型路径 控制台交互:python gpt_cli.py 可视化网页界面交互:streamlit run chat_app.py

2024-10-21

人工智能-大模型-基于 B 站评论区数据构建大语言模型训练用对话数据集

基于 B 站评论区数据构建大语言模型训练用对话数据集 环境 Python 3.7+ (自测环境为 Python 3.10.4) 使用 pip install -r requirements.txt 安装相关依赖 一个可用的 B 站账号

2024-10-21

人工智能-大模型-基于大语言模型的自动综述生成

基于大语言模型的自动综述生成 下述密钥必须由使用者自行提供。 The following keys must be provided by the user themselves. 谷歌学术检索 Google Search API https://serpapi.com/ 大语言模型(二选一或均提供) LLM API (Choose one or both) Claude2 https://claude.ai/chats 支持Open AI 格式的模型地址和密钥 URL and Key compatible with OpenAI format 爱思唯尔开发者 Elsevier Research Products APIs https://dev.elsevier.com/

2024-10-21

人工智能-大模型-基于LLAMA2的增量预训练藏文大语言模型

基于LLAMA2的增量预训练藏文大语言模型 本项目通过基于LORA的参数高效微调方法,训练了Tibetan-Llama2和Tibetan-Alpaca藏文大语言模型,分别包括7B和13B两种规模,以上模型是基于Llama2模型架构构建的,经过较大规模数据的增量预训练和指令微调,具备了对藏文的深入理解和处理能力。

2024-10-21

人工智能-大模型-基于大语言模型的资源查找助手

基于大语言模型的资源查找助手 先去修改 base/__init_.py 里面的配置文件,配置openai的key和网址信息 然后执行pip install -r requrements.txt 最后运行即可

2024-10-21

人工智能-大模型-利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

2024-10-21

人工智能-大模型-基于internlm-chat-7b的保险知识大模型微调

基于internlm-chat-7b的保险知识大模型微调 保险知识问答助手数据集采用中的ChineseNlpCorpus提供的包括用户提问、网友回答、最佳回答,共计 588000 余条,数据集样例: "input": "最近在安邦长青树中看到什么豁免,这个是什么意思?" "output": "您好,这个是重疾险中给予投保者的一项权利,安*长青树保障责任规定,投保者可以享受多次赔付,豁免等权益。也就是说不同轻症累计5次赔付,理赔1次轻症豁免后期所交保费,人性化的设计,无需加保费。" "input": "和团队去北极探险,有没有针对这方面的HUTS保险呢"

2024-10-21

人工智能-大模型-基于大模型的知识库问答 - Large model-based knowledge base Q&A

基于大模型的知识库问答 | Large model-based knowledge base Q&A 2. 运行使用 2.1 以WebUI运行 python webui_demo.py 2.2 以CLI运行 python cli_demo.py 2.3 以API运行 对文本进行编码并进行测试: python cli_demo.py 修改api_demo.py 的vs_path,然后以API运行使用: python api_demo.py 客户端请求: python client.py

2024-10-21

人工智能-大模型-基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function

基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践 特性 多轮对话管理:能够处理复杂的对话场景,支持连续多轮交互。 意图识别:准确判定用户输入的意图,支持自定义意图扩展。 词槽填充:动态识别并填充关键信息(如时间、地点、对象等)。 接口槽技术:直接与外部APIs对接,实现数据的实时获取和处理。 自适应学习:不断学习用户交互,优化回答准确性和响应速度。 易于集成:提供了详细的API文档,支持多种编程语言和平台集成。

2024-10-21

人工智能-大模型-基于自回归模型与现有的开源大模型,训练小说大模型

基于自回归模型与现有的开源大模型,训练小说大模型 Novel-GPT 是一个开源的网文大语言模型,本项目的目的是基于现有的开源大模型 Baichuan,qwen 来进行领域预训练,后续如果有更好的基座会进行切换。 经过多次实验,baichuan2的效果很差,qwen是目前最好的开源基座,后面整体会全部切换到qwen。 本项目依托于网文数据,主要进行以下几个方面的工作: 基于论文摘要数据的微调,原因在于小说任务难以评测,用论文摘要任务来验证代码以及模型能力 基于网文数据进行领域 Pretain 支持主流的开源大模型,如 qwen, baichuan1, baichuan2, 模型架构优化:采用向量融入的方式,针对小说场景下的生成问题进行模型结构优化,致力于解决小说超长文本问题。 -- 核心改进,待开源 开源小说预训练数据集,论文摘要数据集

2024-10-21

人工智能-大模型-知识库、大语言模型、医疗知识库构建、基于大语言模型的知识库

知识库、大语言模型、医疗知识库构建、基于大语言模型的知识库 创建知识库 # create_kb.py 1.创建数据库,并将库文件置于自定义位置 2.利用text2ve将文本转为向量,文本与向量导入知识库中 构建搜索 同样利用text2vec将待匹配文本转为向量与库中向量进行匹配 大模型 搜索结果与问题转为特定的prompt,输入大语言模型进行答案生成

2024-10-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除