- 博客(318)
- 资源 (431)
- 收藏
- 关注
原创 人工智能|预训练大模型——基于Ollama+AnythingLLM搭建本地私有知识库系统
AnythingLLM 是 Mintplex Labs 开发的一款可以与任何内容聊天的私人ChatGPT,是高效、可定制、开源的企业级文档聊天机器人解决方案。它能够将任何文档、资源或内容片段转化为大语言模型(LLM)在聊天中可以利用的相关上下文。AnythingLLM 支持多种文档类型(PDF、TXT、DOCX等),具有对话和查询两种聊天模式。
2024-09-26 22:12:38 915
原创 人工智能|预训练大模型——全球医疗大模型
谷歌和DeepMind的科研人员在《自然》杂志上发表了一项研究,根据其研究结果,一组临床医生对谷歌和DeepMind团队的医疗大模型Med-PaLM回答的评分高达92.6%,与现实中人类临床医生的水平(92.9%)相当。
2024-09-17 15:58:32 2100
原创 人工智能|集成学习——混合专家模型 (MoE)
与稠密模型相比,预训练速度更快与具有相同参数数量的模型相比,具有更快的推理速度需要大量显存,因为所有专家系统都需要加载到内存中在微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行指令调优具有很大的潜力。为了实现大模型的高效训练和推理,有的是从模型底层下手,比如直接改变底层模型架构,将原来的Transformer架构改成近期新出的基于状态空间模型(SSM)的mamba架构;
2024-09-12 11:21:44 1498
原创 科研学习|论文解读——OceanGPT:用于海洋科学任务的大型语言模型
•海洋科学语料库包含多个领域和主题 ,每个主题都有其独特的数据特征和模式。为了有效地模拟和获取这些数据 ,我们提出了 一种领域指令生成框架DOINSTRUCT。通过多代理合作获取海洋指令。每个代理都被视为特定领域(主题)的专家 ,并负责生成相应的数据。它不仅保证了数据的专业性和准确性 ,而且允许并行高效地生成大量数据。•我们根据海洋学专家的专业知识 ,将海洋科学中的数据手动分类为五个主要的海洋主题:科学和研究、资源和开发、生态与环境、技术和工程、生活和文化等。
2024-09-03 16:11:52 1189 5
原创 编程语言|Python——为什么0.1+0.2≠0.3(深入理解Python中的浮点数运算)
在python中可以采用采用round()函数,对数据进行处理。round()函数的格式:round(x, d), 其中x表示需要被处理的数据,d表示要返回的小数位数,即round(x, d)代表返回参数x的四舍五入的有 d 位小数的一个数字。d=0表示取整,d=1表示要返回一位小数,以此类推。此外,round()会自动四舍五入。
2024-08-01 10:51:42 1088 1
原创 人工智能|机器学习——Aho-Corasic多模匹配算法的学习、理解和应用(Python)
2.1 Aho-Corasick算法的定义Aho-Corasick(简称为AC自动机),是一种基于前缀的,使用了确定有限自动机(DFA)原理的,字符串多模匹配算法。什么是DFA?DFA也就是确定有限自动机,英文全称是Deterministic Finite Automaton。具体的细节介绍,可以参照百度百科、维基百科,以及《算法导论》之类的算法书。在这里,我们尝试用通俗的语言和图示来解释一遍。首先,什么是自动机(A)。自动机就是一个代码块。这段代码块只做一件事,那就是接收输入值和状态值输出。
2024-07-28 10:56:51 766
原创 环境配置|Neo4j数据库——Neo4j安装与配置以及JDK安装与配置教程(详细)
JDK=17 Neo4j=5.15(win10也可以)由于是基于Java的图数据库,运行Neo4j需要启动JVM进程,因此必须SE的JDK。配置 JDK环境,为以后能适应Springboot,请选择最低JDK1.8的环境。
2024-07-17 22:35:23 892
原创 环境配置|PyCharm——Pycharm本地项目打包上传到Github仓库的操作步骤
通过Ctrl+Alt+S快捷组合键的方式,打开设置,导航到版本控制一栏中的Git,在Git可执行文件路径中,输入Git.exe。按照下图顺序,依次点击,完成测试。输出如图标④的结果,即可完成测试。输出下图结果,配置Git成功,如本地未安装Git,需自行安装。下图栏中不输入任何配置信息,直接点击测试,如本地端有安装并配置Git,也能够自动弹出Git默认安装路径。点击测试即可。
2024-07-16 15:40:24 721
原创 人工智能|深度学习——常用的神经网络优化算法(从梯度下降到 Adam!)
优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x)。模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x)。比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经网络模型时起到主要作用。在有效地训练模型并产生准确结果时,模型的内部参数起到了非常重要的作用。这也是为什么我们应该用各种优化策略和算法,来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值。
2024-07-15 11:44:18 1055
原创 心理学|心理咨询概论——心理咨询概论单科作业(中科院)
咨询结束后,心理咨询师与求助者的关系也应终止┋C、咨询师对咨询效果的预期,既不能过分保守,也不能冒进┋D、心理咨询师不介入、不解决求助者生活中的具体问题。、以下关于心理咨询师需要具备的一些个人特质(即对人的心理活动的感受性、丰富的想象力、思维的敏捷性与灵活性)的叙述,正确的是( )。、整合身体、情感、认知、情境和行为系统┋B、研究和实践的整合┋C、各种心理疗法的理论和技术的整合┋D、个人和职业的整合。、个体未表达出来的情感,包括悔恨、愤怒、怨恨、痛苦、焦虑、悲伤、罪恶、遗弃感等在完形疗法中称为( )。
2024-07-10 18:16:37 527
原创 心理学|变态心理学&健康信息学——变态心理学与健康心理学单科作业题(中科院)
健康的心理活动是一种处于动态平衡的心理过程┋B、它涵盖一切有利于个体生存与发展的心理活动┋C、它是围绕心理健康常模,在一定范围内上下波动的相对平衡过程┋D、它在某一时间段内,展现着自身的正常功能。、精神分裂症患者在言谈或书信中,其单独语句在语法结构上是正确的,但主题之间、语句之间缺乏内在意义上的连贯性和应有的逻辑性,这种症状是( )、在应对压力过程中个体变得敏感、脆弱,即使是日常微小的困扰,都可引发个体强烈的情绪反应,说明其处于“一般适应征候群”的( )
2024-07-03 14:58:55 538
原创 心理学|人格心理学——人格心理学单科作业(中科院)
人格的统合性体现了人格的组织功能、匹配功能和健康功能┋B、人格决定一个人的生活方式,甚至有时会决定一个人的命运┋D、人格的内在的统一性遭到破坏,就会产生心理冲突,出现各种适应困难。、霍尼所说的( )是指个体在此时此地所表现出来的一切存在的总和,是别人所能观察到的客观存在,独立于个体的自我概念和知觉。、根据卡特尔的理论,在根源特质中,( )是由遗传决定的特性,决定个体对情境做出反应的速度、能量、脾气等。、人格决定一个人的生活方式,甚至有时会决定一个人的命运,反映的是人格的( )
2024-07-01 12:15:49 587
原创 心理学|发展心理学——发展心理学单科作业(中科院)
心理活动的随意机能的形成和发展┋B、心理机能相互作用并重新组合┋C、心理活动抽象概括机能的形成和发展┋D、心理活动越发突出个性特征。、心理发展是由遗传因素决定的┋B、心理发展的过程是遗传素质的自然显现过程┋C、环境只能促进或延缓遗传素质的自我显现而已。、在有指导的情境下,儿童借助成人的帮助所达到的解决问题的水平与在独立活动中所达到的解决问题的水平之间的差距。、在有指导的情境下,儿童借助成人的帮助所达到的解决问题的水平与在独立活动中所达到的解决问题的水平之间的差距。
2024-06-24 22:11:17 834
原创 心理学|社会心理学——社会心理学单科作业(中科院)
是一种与人交往的时候,觉得不舒服、不自然、紧张,甚至恐惧的情绪体验┋C、社交焦虑是一种消极的情绪体验┋D、为了回避导致社交焦虑的情境,个体通常是减少社交,选择孤独的生活方式。、在一项试验中,给被试呈现一组他人的面部照片,照片被呈现的次数不同,结果发现,照片呈现次数越多,被试越喜欢,这说明人际吸引受( )的影响。、态度转变是在沟通信息与接收者原有态度存在差异的情况下发生的,对于威信低的传递者,要引发最大的态度转变量,这种差异应该( )。、信息如果能唤起人们的畏惧情绪,一般有利于说服。
2024-06-24 21:38:45 431
原创 心理学|基础心理学——基础心理学单科作业(中科院)
能够感觉到的最小刺激强度叫下限┋C、能够忍受的刺激的最大强度叫上限┋D、下限和上限之间的刺激都是可以引起感觉的范围。、是人和动物心理的根本区别┋B、是自然进化的最高产物┋C、是物质发展最高阶段的产物┋D、是在觉醒状态下的觉知。、是人类智慧的根源┋B、人脑对输入的信息进行编码、储存和提取的过程┋C、过去的经验在头脑中的反映。、动机是在需要的基础上产生的┋C、动机是人活动的内部动力┋D、不同的活动可以由相同的动机引起。、是以词来标示和记载的┋B、是思维活动借以进行的单元┋C、是人脑对客观事物本质属性的反映。
2024-05-20 12:33:19 677
原创 人工智能|编程语言——基于python的网络爬虫爬取天气数据及可视化分析(Matplotlib、sklearn等)
在文中,我们旨在利用爬取的历史天气数据进行可视化分析。首先,我们选择了一个可靠的数据源,并使用Python编程语言和BeautifulSoup库实现了数据的爬取。接着,我们对原始数据进行了清洗和处理,包括缺失值的处理和数据格式转换。然后,我们采用了Matplotlib可视化工具,设计了多种图表类型,如折线图、柱状图和热力图,以展示历史天气数据的趋势和变化。通过分析结果,我们发现了不同时间段内温度、天气状况等指标的变化情况,并与历史数据进行了比较。
2024-05-16 12:12:27 1018
原创 人工智能|推荐系统——工业界的推荐系统之冷启动
UGC的物品冷启有哪些⼩红书上⽤户新发布的笔记。B站上⽤户新上传的视频。今⽇头条上作者新发布的⽂章。为什么要特殊对待新笔记?新笔记缺少与⽤户的交互,导致推荐的难度⼤、效果差。扶持新发布、低曝光的笔记,可以增强作者发布意愿。优化冷启的目标精准推荐:克服冷启的困难,把新笔记推荐给合适的⽤户,不引起⽤户反感。激励发布:流量向低曝光新笔记倾斜,激励作者发布。挖掘⾼潜:通过初期⼩流量的试探,找到⾼质量的笔记,给与流量倾斜。
2024-05-09 14:11:10 458
原创 人工智能|推荐系统——工业界的推荐系统之序列建模
对LastN物品ID做embedding,得到 𝑛 个向量。把 𝑛 个向量取平均,作为⽤户的⼀种特征。适⽤于召回双塔模型、粗排三塔模型、精排模型。
2024-05-08 13:29:09 256
原创 人工智能|机器学习——强大的 Scikit-learn 可视化让模型说话
使用 utils.discovery.all_displays 查找可用的 API。Sklearn 的可以让你看到哪些类可以使用。Scikit-learn (sklearn) 总是会在新版本中添加 "Display "API,因此这里可以了解你的版本中有哪些可用的 API。
2024-05-07 23:14:04 1160 1
原创 科研学习|可视化——ggplot2版本的网络可视化
ggplot2是R语言中一个非常流行的数据可视化包,它也可以用于网络可视化。: 这个包的使用方法与传统的plot函数相似,易于使用。更多信息可在其官方页面查看:ggnet2: 这个包在ggplot2中增加了geom_net层,可以使用数据框作为输入,并且可以与Plotly交互,从而支持交互式图形。有关更多信息,请访问:geomnet on GitHub 和 geomnet on CRAN(首选): 这个包是三者中最灵活的,特别适合动态网络的可视化。它结合了ggplot2的优雅语法和网络数据的处理能力。
2024-05-07 22:52:03 1286
原创 人工智能|推荐系统——工业界的推荐系统之交叉
SENet 对离散特征做field-wise加权,如果有𝑚 个fields,那么权重向量是𝑚 维。FiBiNet可以理解为同时考虑了SENet 结合 Field 间特征交叉。之前提到过的召回、排序模型中的神经网络可以用任意网络结构;LHUC起源于语⾳识别,快⼿将LHUC应⽤在推荐精排,称作PPNet。深度交叉网络就是两个分支,一边是全连接,一边是交叉网络。线性模型预测是特征的加权和。交叉网络就是多个交叉层串起来的网络。可以通过矩阵分解减少模型参数量。Field 间特征交叉。
2024-05-06 10:16:41 363 3
原创 人工智能|推荐系统——工业界的推荐系统之排序
完播率通常和视频时长有关,不能直接把预估的完播率⽤到融分公式。训练时通常会遇到类别不平衡问题,可以考虑做采样。多目标有多个预估分数就可以有不同融合方式。进一步考虑对多个神经网络的输出进行加权。可以通过dropout的方式来解决极化。预测概率和实际是否交互求交叉熵损失。多目标模型就是要预测多个目标。几个专家就是放几个神经网络。视频完播用回归或分类都可以。通常做个调整再用到融分公式。双塔模型牺牲准确性换计算量。可以通过校准公式进行校准。精排模型的线上推理代价大。回顾一下推荐系统的链路。可能会出现极化的现象。
2024-05-06 09:36:10 320
原创 人工智能|推荐系统——工业界的推荐系统之召回
离散特征可以用Embedding Layers,连续特征可以归一化、分桶等处理。Swing额外考虑重合的⽤户是否来⾃⼀个⼩圈⼦,两个⽤户重合度⼤,则可能来⾃⼀个⼩圈⼦,权重降低。简单负样本可以是全体物品(考虑非均匀采样打压热门物品)或者Batch内负样本。⽤户兴趣动态变化,⽽物品特征相对稳定,事先存储物品向量𝐛,线上现算⽤户向量𝐚。困难负样本主要考虑被召回,但是被排序淘汰的样本。一个物品的两个向量可以通过一些特征变换得到。⽤索引,离线计算量⼤,线上计算量⼩。正样本的选择需要考虑冷门、热门物品。
2024-05-04 10:26:54 457
原创 人工智能|推荐系统——工业界的推荐系统之概要
但是随机分桶的问题在于无法做多个实验,因此通常考虑分层实验,同层互斥就是做的分桶,不同层正交可以避免不同实验之间的干扰,就可以做无数组实验。实验推全是逐步将新推荐策略应用到所有用户的过程,而反转实验是通过将部分用户回退到旧策略来评估新策略的有效性。粗排、精排会考虑用户特征、物品特征、统计特征来建模,同时考虑多个消费指标,然后得到一个最终的排序分数。通常会考虑用户的一些消费指标。
2024-05-02 23:41:55 243
原创 科研学习|研究方法——小波相干分析在时间序列分析中的应用
在某些情况下,两个时间序列中的共同行为是由一个时间序列驱动或影响另一个时间序列引起的,对于联合平稳时间序列,用于表征时间或频率相关行为的方法通常是互相关、(傅立叶)互谱和相干性。然而,时间序列通常是非平稳的,即它们的频率内容会随着时间而变化,对于这些时间序列,重要的是时频平面中的相关性或相干性。因此可以使用小波相干性来检测非平稳信号中常见的时间局部振荡,且在将一个时间序列视为影响另一个时间序列的情况下,可以使用小波交叉谱的相位来识别两个时间序列之间的相对滞后。
2024-04-28 16:03:34 1435 1
原创 科研学习|论文解读——CVPR 2021 人脸造假检测(论文合集)
deepfake的人脸伪造技术在互联网上广泛传播,并引起了严重的社会关注。近年来,如何检测此类伪造内容已成为一个研究热点,并提出了许多深度伪造检测方法。其中,大多数将深度伪造检测建模为普通的二元分类问题,即首先使用骨干网络提取全局特征,然后将其输入二元分类器(real/fake)。但由于这个任务中,真实图像和虚假图像之间的差异通常是微妙和局部的,我们认为这种香草解决方案不是最优的。在本文中,我们将深度伪造检测描述为一个细粒度的分类问题,并提出了一种新的多注意力深度伪造检测网络。
2024-04-28 15:42:39 2762
原创 人工智能|推荐系统——推荐系统经典模型YouTubeDNN
我们可以把召回模型的结构分为三层。输入层:输入层总共有四种特征。用户看过视频的 Embedding(embedded video watches)用户搜索的关键词的 Embedding 向量(embedded search tokens)用户所在的地理位置的特征(geographic embedding)适用于冷启动用户基本特征(example age, gender)
2024-04-27 22:11:16 784
原创 人工智能|推荐系统——推荐大模型最新进展
Embedding 已成为表示关于实体、概念和关联的复杂的信息的关键手段,并以简洁且有用的格式呈现。然而,它们通常难以直接进行解释。尽管下游任务利用这些压缩表示,但要进行有意义的解释通常需要使用降维或专门的机器学习可解释性方法进行可视化。本文解决了使这些嵌入更具解释性和广泛实用性的挑战,通过利用大语言模型(LLMs)直接与嵌入进行交互,将抽象向量转化为可理解的叙述。通过将嵌入注入LLMs,我们使复杂的嵌入数据可以进行查询和探索。
2024-04-27 21:56:52 1299
原创 人工智能|深度学习——多模态条件机制 Cross Attention 原理及实现
虽然之前写过 Attention 的文章,但现在回头看之前写的一些文章,感觉都好啰嗦,正好下一篇要写的 Stable Diffusion 中有 cross-attention,索性就再单拎出来简单说一下 Attention 吧,那么这篇文章的作用有两个:第一是为 Stable Diffusion 做补充,第二是为后续的 Vision Transformer 和 Swin Transformer 做铺垫。
2024-04-25 10:40:17 13713 1
原创 科研学习|论文解读——交叉注意力融合2024经典论文(配套模块和代码)
多模态学习和注意力机制是当前深度学习研究的热点领域之一,而,具有很大的发展空间和创新机会。作为多模态融合的一个重要组成部分,交叉注意力融合通过注意力机制在不同模块之间建立联系,促进信息的交流和整合,从而提升了模型处理复杂任务的能力,展现出其在多模态学习和聚类分析等领域的强大优势。本文盘点交叉注意力融合相关的13个技术成果,包含2024年最新的研究,这些模块的来源文章以及代码我都整理了,希望能给各位的论文添砖加瓦。
2024-04-25 10:21:39 5297
原创 心理学|变态心理学&健康心理学——躯体疾病患者的一般心理特点
患者除了内部器官有器质或功能障碍外,他们的自我感觉和整个精神状态也会发生变化。使人改变对周围事物的感受和态度,也可以改变患者对自身存在价值的态度。这种主观态度的改变,可以使患者把自己置于人际关系中的特殊位置上(好像已经或将要被人群抛弃)。
2024-04-22 16:28:47 292
原创 人工智能|tensorflow2.0框架——在TensorFlow2.0中使用TensorFlow1.0的代码
使用import tensorflow.compat.v1 as tf来导入TensorFlow 1.x的兼容性模块,并通过tf.disable_v2_behavior()来禁用TensorFlow 2.0的行为。
2024-04-21 16:53:20 261
原创 科研学习|论文解读——大模型综述!一文带你理清全球AI巨头的大模型进化史
大模型必然是未来很长一段时间我们工作生活的一部分,而对于这样一个与我们生活高度同频互动的“大家伙”,除了性能、效率、成本等问题外,大规模语言模型的安全问题几乎是大模型所面对的所有挑战之中的重中之重,机器幻觉是大模型目前还没有极佳解决方案的主要问题,大模型输出的有偏差或有害的幻觉将会对使用者造成严重后果。同时,随着 LLMs 的“公信度”越来越高,用户可能会过度依赖 LLMs 并相信它们能够提供准确的信息,这点可以预见的趋势增加了大模型的安全风险。除了误导性信息外,
2024-04-21 16:39:19 2528
原创 科研学习|科研软件——如何使用SmartPLS软件进行结构方程建模
SmartPLS是一种用于结构方程建模(SEM)的软件,它可以用于定量研究,尤其是在商业和社会科学领域中,如市场研究、管理研究、心理学研究等。
2024-04-14 22:47:43 3379 1
原创 人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目
通过本项目,我们使用了机器学习模型预测了客户的信用卡办卡意愿,并通过Django实现了数据的可视化展示。这使得银行和金融机构能够更好地理解客户行为模式,并做出相应的业务决策。
2024-04-13 22:12:09 873 1
人工智能-大模型-基于SuperAGI 专注中文领域的大模型AI应用框架
2024-10-21
人工智能-大模型-PDF解析(文字,章节,表格,图片,参考),基于大模型(ChatGLM2-6B, RWKV)+langchai
2024-10-21
人工智能-大模型-基于大语言模型(LLM)和多智能体(Multi-Agent),探究AI写小说能力的边界
2024-10-21
人工智能-大模型-基于InternLM2大模型的离线具身智能导盲犬
2024-10-21
人工智能-大模型-基于CNN训练的一套 "端到端" 的验证码识别模型,使用深度学习+训练数据+大量计算力
2024-10-21
人工智能-大模型-基于大语言模型的专属知识库
2024-10-21
人工智能-大模型-基于baichuan-7b的多模态大语言模型
2024-10-21
人工智能-大模型-基于大模型+知识图谱的知识库问答
2024-10-21
人工智能-大模型-基于已有基座模型微调的算命大模型
2024-10-21
人工智能-大模型-基于大语言模型和 RAG 的知识库问答系统
2024-10-21
人工智能-扩散模型-基于扩散模型stable diffusion的T恤图案设计和基于HR-VITON的虚拟试衣项目
2024-10-28
人工智能-机器学习-基于各种机器学习和深度学习的中文微博情感分析
2024-10-24
人工智能-大模型-基于DPO算法微调语言大模型,简单好上手
2024-10-21
人工智能-大模型-基于大模型的企业内部知识库和工具流系统,web界面,完全局域网内网部署(外网隔离)
2024-10-21
人工智能-大模型-基于大模型ChatGLM,微调方式为LORA,集SFT、RM、PPO算法为一体项目
2024-10-21
人工智能-大模型-基于外挂知识库的大模型问答
2024-10-21
人工智能-大模型-基于大模型的高质量情感虚拟人系统
2024-10-21
人工智能-大模型-基于yolov4的老鼠位置检测,并且裁剪了模型大小
2024-10-21
人工智能-大模型-一个基于大模型的口语对话顾问
2024-10-21
人工智能-大模型-一个基于大模型微调的中文医疗问答机器人应用
2024-10-21
人工智能-大模型-基于 B 站评论区数据构建大语言模型训练用对话数据集
2024-10-21
人工智能-大模型-基于大语言模型的自动综述生成
2024-10-21
人工智能-大模型-基于LLAMA2的增量预训练藏文大语言模型
2024-10-21
人工智能-大模型-基于大语言模型的资源查找助手
2024-10-21
人工智能-大模型-利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服
2024-10-21
人工智能-大模型-基于internlm-chat-7b的保险知识大模型微调
2024-10-21
人工智能-大模型-基于大模型的知识库问答 - Large model-based knowledge base Q&A
2024-10-21
人工智能-大模型-基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function
2024-10-21
人工智能-大模型-基于自回归模型与现有的开源大模型,训练小说大模型
2024-10-21
人工智能-大模型-知识库、大语言模型、医疗知识库构建、基于大语言模型的知识库
2024-10-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人