自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(318)
  • 资源 (431)
  • 收藏
  • 关注

原创 人工智能|预训练大模型——基于Ollama+AnythingLLM搭建本地私有知识库系统

AnythingLLM 是 Mintplex Labs 开发的一款可以与任何内容聊天的私人ChatGPT,是高效、可定制、开源的企业级文档聊天机器人解决方案。它能够将任何文档、资源或内容片段转化为大语言模型(LLM)在聊天中可以利用的相关上下文。AnythingLLM 支持多种文档类型(PDF、TXT、DOCX等),具有对话和查询两种聊天模式。

2024-09-26 22:12:38 915

原创 人工智能|预训练大模型——全球医疗大模型

谷歌和DeepMind的科研人员在《自然》杂志上发表了一项研究,根据其研究结果,一组临床医生对谷歌和DeepMind团队的医疗大模型Med-PaLM回答的评分高达92.6%,与现实中人类临床医生的水平(92.9%)相当。

2024-09-17 15:58:32 2100

原创 人工智能|集成学习——混合专家模型 (MoE)

与稠密模型相比,预训练速度更快与具有相同参数数量的模型相比,具有更快的推理速度需要大量显存,因为所有专家系统都需要加载到内存中在微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行指令调优具有很大的潜力。为了实现大模型的高效训练和推理,有的是从模型底层下手,比如直接改变底层模型架构,将原来的Transformer架构改成近期新出的基于状态空间模型(SSM)的mamba架构;

2024-09-12 11:21:44 1498

原创 科研学习|论文解读——OceanGPT:用于海洋科学任务的大型语言模型

•海洋科学语料库包含多个领域和主题 ,每个主题都有其独特的数据特征和模式。为了有效地模拟和获取这些数据 ,我们提出了 一种领域指令生成框架DOINSTRUCT。通过多代理合作获取海洋指令。每个代理都被视为特定领域(主题)的专家 ,并负责生成相应的数据。它不仅保证了数据的专业性和准确性 ,而且允许并行高效地生成大量数据。•我们根据海洋学专家的专业知识 ,将海洋科学中的数据手动分类为五个主要的海洋主题:科学和研究、资源和开发、生态与环境、技术和工程、生活和文化等。

2024-09-03 16:11:52 1189 5

原创 编程语言|Python——为什么0.1+0.2≠0.3(深入理解Python中的浮点数运算)

在python中可以采用采用round()函数,对数据进行处理。round()函数的格式:round(x, d), 其中x表示需要被处理的数据,d表示要返回的小数位数,即round(x, d)代表返回参数x的四舍五入的有 d 位小数的一个数字。d=0表示取整,d=1表示要返回一位小数,以此类推。此外,round()会自动四舍五入。

2024-08-01 10:51:42 1088 1

原创 人工智能|机器学习——Aho-Corasic多模匹配算法的学习、理解和应用(Python)

2.1 Aho-Corasick算法的定义Aho-Corasick(简称为AC自动机),是一种基于前缀的,使用了确定有限自动机(DFA)原理的,字符串多模匹配算法。什么是DFA?DFA也就是确定有限自动机,英文全称是Deterministic Finite Automaton。具体的细节介绍,可以参照百度百科、维基百科,以及《算法导论》之类的算法书。在这里,我们尝试用通俗的语言和图示来解释一遍。首先,什么是自动机(A)。自动机就是一个代码块。这段代码块只做一件事,那就是接收输入值和状态值输出。

2024-07-28 10:56:51 766

原创 环境配置|Neo4j数据库——Neo4j安装与配置以及JDK安装与配置教程(详细)

JDK=17 Neo4j=5.15(win10也可以)由于是基于Java的图数据库,运行Neo4j需要启动JVM进程,因此必须SE的JDK。配置 JDK环境,为以后能适应Springboot,请选择最低JDK1.8的环境。

2024-07-17 22:35:23 892

原创 环境配置|PyCharm——Pycharm本地项目打包上传到Github仓库的操作步骤

通过Ctrl+Alt+S快捷组合键的方式,打开设置,导航到版本控制一栏中的Git,在Git可执行文件路径中,输入Git.exe。按照下图顺序,依次点击,完成测试。输出如图标④的结果,即可完成测试。输出下图结果,配置Git成功,如本地未安装Git,需自行安装。下图栏中不输入任何配置信息,直接点击测试,如本地端有安装并配置Git,也能够自动弹出Git默认安装路径。点击测试即可。

2024-07-16 15:40:24 721

原创 人工智能|深度学习——常用的神经网络优化算法(从梯度下降到 Adam!)

优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x)。模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x)。比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经网络模型时起到主要作用。在有效地训练模型并产生准确结果时,模型的内部参数起到了非常重要的作用。这也是为什么我们应该用各种优化策略和算法,来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值。

2024-07-15 11:44:18 1055

原创 心理学|心理咨询概论——心理咨询概论单科作业(中科院)

咨询结束后,心理咨询师与求助者的关系也应终止┋C、咨询师对咨询效果的预期,既不能过分保守,也不能冒进┋D、心理咨询师不介入、不解决求助者生活中的具体问题。、以下关于心理咨询师需要具备的一些个人特质(即对人的心理活动的感受性、丰富的想象力、思维的敏捷性与灵活性)的叙述,正确的是( )。、整合身体、情感、认知、情境和行为系统┋B、研究和实践的整合┋C、各种心理疗法的理论和技术的整合┋D、个人和职业的整合。、个体未表达出来的情感,包括悔恨、愤怒、怨恨、痛苦、焦虑、悲伤、罪恶、遗弃感等在完形疗法中称为( )。

2024-07-10 18:16:37 527

原创 心理学|变态心理学&健康信息学——变态心理学与健康心理学单科作业题(中科院)

健康的心理活动是一种处于动态平衡的心理过程┋B、它涵盖一切有利于个体生存与发展的心理活动┋C、它是围绕心理健康常模,在一定范围内上下波动的相对平衡过程┋D、它在某一时间段内,展现着自身的正常功能。、精神分裂症患者在言谈或书信中,其单独语句在语法结构上是正确的,但主题之间、语句之间缺乏内在意义上的连贯性和应有的逻辑性,这种症状是( )、在应对压力过程中个体变得敏感、脆弱,即使是日常微小的困扰,都可引发个体强烈的情绪反应,说明其处于“一般适应征候群”的( )

2024-07-03 14:58:55 538

原创 心理学|人格心理学——人格心理学单科作业(中科院)

人格的统合性体现了人格的组织功能、匹配功能和健康功能┋B、人格决定一个人的生活方式,甚至有时会决定一个人的命运┋D、人格的内在的统一性遭到破坏,就会产生心理冲突,出现各种适应困难。、霍尼所说的( )是指个体在此时此地所表现出来的一切存在的总和,是别人所能观察到的客观存在,独立于个体的自我概念和知觉。、根据卡特尔的理论,在根源特质中,( )是由遗传决定的特性,决定个体对情境做出反应的速度、能量、脾气等。、人格决定一个人的生活方式,甚至有时会决定一个人的命运,反映的是人格的( )

2024-07-01 12:15:49 587

原创 心理学|发展心理学——发展心理学单科作业(中科院)

心理活动的随意机能的形成和发展┋B、心理机能相互作用并重新组合┋C、心理活动抽象概括机能的形成和发展┋D、心理活动越发突出个性特征。、心理发展是由遗传因素决定的┋B、心理发展的过程是遗传素质的自然显现过程┋C、环境只能促进或延缓遗传素质的自我显现而已。、在有指导的情境下,儿童借助成人的帮助所达到的解决问题的水平与在独立活动中所达到的解决问题的水平之间的差距。、在有指导的情境下,儿童借助成人的帮助所达到的解决问题的水平与在独立活动中所达到的解决问题的水平之间的差距。

2024-06-24 22:11:17 834

原创 心理学|社会心理学——社会心理学单科作业(中科院)

是一种与人交往的时候,觉得不舒服、不自然、紧张,甚至恐惧的情绪体验┋C、社交焦虑是一种消极的情绪体验┋D、为了回避导致社交焦虑的情境,个体通常是减少社交,选择孤独的生活方式。、在一项试验中,给被试呈现一组他人的面部照片,照片被呈现的次数不同,结果发现,照片呈现次数越多,被试越喜欢,这说明人际吸引受( )的影响。、态度转变是在沟通信息与接收者原有态度存在差异的情况下发生的,对于威信低的传递者,要引发最大的态度转变量,这种差异应该( )。、信息如果能唤起人们的畏惧情绪,一般有利于说服。

2024-06-24 21:38:45 431

原创 心理学|基础心理学——基础心理学单科作业(中科院)

能够感觉到的最小刺激强度叫下限┋C、能够忍受的刺激的最大强度叫上限┋D、下限和上限之间的刺激都是可以引起感觉的范围。、是人和动物心理的根本区别┋B、是自然进化的最高产物┋C、是物质发展最高阶段的产物┋D、是在觉醒状态下的觉知。、是人类智慧的根源┋B、人脑对输入的信息进行编码、储存和提取的过程┋C、过去的经验在头脑中的反映。、动机是在需要的基础上产生的┋C、动机是人活动的内部动力┋D、不同的活动可以由相同的动机引起。、是以词来标示和记载的┋B、是思维活动借以进行的单元┋C、是人脑对客观事物本质属性的反映。

2024-05-20 12:33:19 677

原创 人工智能|编程语言——基于python的网络爬虫爬取天气数据及可视化分析(Matplotlib、sklearn等)

在文中,我们旨在利用爬取的历史天气数据进行可视化分析。首先,我们选择了一个可靠的数据源,并使用Python编程语言和BeautifulSoup库实现了数据的爬取。接着,我们对原始数据进行了清洗和处理,包括缺失值的处理和数据格式转换。然后,我们采用了Matplotlib可视化工具,设计了多种图表类型,如折线图、柱状图和热力图,以展示历史天气数据的趋势和变化。通过分析结果,我们发现了不同时间段内温度、天气状况等指标的变化情况,并与历史数据进行了比较。

2024-05-16 12:12:27 1018

原创 人工智能|深度学习——YOLOV8结构图

YOLOV8

2024-05-15 23:13:47 519

原创 人工智能|机器学习——14种数据异常监测方法

本文收集整理了公开网络上一些常见的异常检测方法(附资料来源和代码)。不足之处,还望批评指正。

2024-05-15 16:25:40 913

原创 人工智能|深度学习——PlotNeuralNet简单教程

是一个强大的开源Python库,它专为简化和美化神经网络图的绘制而设计。

2024-05-10 23:33:07 1464

原创 人工智能|推荐系统——工业界的推荐系统之涨指标

三、涨指标的方法:排序模型五、涨指标的方法:特殊对待特殊人群六、涨指标的方法:利用交互行为。

2024-05-09 14:53:44 210

原创 人工智能|推荐系统——工业界的推荐系统之冷启动

UGC的物品冷启有哪些⼩红书上⽤户新发布的笔记。B站上⽤户新上传的视频。今⽇头条上作者新发布的⽂章。为什么要特殊对待新笔记?新笔记缺少与⽤户的交互,导致推荐的难度⼤、效果差。扶持新发布、低曝光的笔记,可以增强作者发布意愿。优化冷启的目标精准推荐:克服冷启的困难,把新笔记推荐给合适的⽤户,不引起⽤户反感。激励发布:流量向低曝光新笔记倾斜,激励作者发布。挖掘⾼潜:通过初期⼩流量的试探,找到⾼质量的笔记,给与流量倾斜。

2024-05-09 14:11:10 458

原创 人工智能|推荐系统——工业界的推荐系统之重排

基于物品属性标签基于物品向量表征 ⽤召回的双塔模型学到的物品向量(不好)

2024-05-08 13:42:37 273

原创 人工智能|推荐系统——工业界的推荐系统之序列建模

对LastN物品ID做embedding,得到 𝑛 个向量。把 𝑛 个向量取平均,作为⽤户的⼀种特征。适⽤于召回双塔模型、粗排三塔模型、精排模型。

2024-05-08 13:29:09 256

原创 人工智能|机器学习——强大的 Scikit-learn 可视化让模型说话

使用 utils.discovery.all_displays 查找可用的 API。Sklearn 的可以让你看到哪些类可以使用。Scikit-learn (sklearn) 总是会在新版本中添加 "Display "API,因此这里可以了解你的版本中有哪些可用的 API。

2024-05-07 23:14:04 1160 1

原创 科研学习|可视化——ggplot2版本的网络可视化

ggplot2是R语言中一个非常流行的数据可视化包,它也可以用于网络可视化。: 这个包的使用方法与传统的plot函数相似,易于使用。更多信息可在其官方页面查看:ggnet2: 这个包在ggplot2中增加了geom_net层,可以使用数据框作为输入,并且可以与Plotly交互,从而支持交互式图形。有关更多信息,请访问:geomnet on GitHub 和 geomnet on CRAN(首选): 这个包是三者中最灵活的,特别适合动态网络的可视化。它结合了ggplot2的优雅语法和网络数据的处理能力。

2024-05-07 22:52:03 1286

原创 人工智能|推荐系统——工业界的推荐系统之交叉

SENet 对离散特征做field-wise加权,如果有𝑚 个fields,那么权重向量是𝑚 维。FiBiNet可以理解为同时考虑了SENet 结合 Field 间特征交叉。之前提到过的召回、排序模型中的神经网络可以用任意网络结构;LHUC起源于语⾳识别,快⼿将LHUC应⽤在推荐精排,称作PPNet。深度交叉网络就是两个分支,一边是全连接,一边是交叉网络。线性模型预测是特征的加权和。交叉网络就是多个交叉层串起来的网络。可以通过矩阵分解减少模型参数量。Field 间特征交叉。

2024-05-06 10:16:41 363 3

原创 人工智能|推荐系统——工业界的推荐系统之排序

完播率通常和视频时长有关,不能直接把预估的完播率⽤到融分公式。训练时通常会遇到类别不平衡问题,可以考虑做采样。多目标有多个预估分数就可以有不同融合方式。进一步考虑对多个神经网络的输出进行加权。可以通过dropout的方式来解决极化。预测概率和实际是否交互求交叉熵损失。多目标模型就是要预测多个目标。几个专家就是放几个神经网络。视频完播用回归或分类都可以。通常做个调整再用到融分公式。双塔模型牺牲准确性换计算量。可以通过校准公式进行校准。精排模型的线上推理代价大。回顾一下推荐系统的链路。可能会出现极化的现象。

2024-05-06 09:36:10 320

原创 人工智能|推荐系统——工业界的推荐系统之召回

离散特征可以用Embedding Layers,连续特征可以归一化、分桶等处理。Swing额外考虑重合的⽤户是否来⾃⼀个⼩圈⼦,两个⽤户重合度⼤,则可能来⾃⼀个⼩圈⼦,权重降低。简单负样本可以是全体物品(考虑非均匀采样打压热门物品)或者Batch内负样本。⽤户兴趣动态变化,⽽物品特征相对稳定,事先存储物品向量𝐛,线上现算⽤户向量𝐚。困难负样本主要考虑被召回,但是被排序淘汰的样本。一个物品的两个向量可以通过一些特征变换得到。⽤索引,离线计算量⼤,线上计算量⼩。正样本的选择需要考虑冷门、热门物品。

2024-05-04 10:26:54 457

原创 人工智能|推荐系统——工业界的推荐系统之概要

但是随机分桶的问题在于无法做多个实验,因此通常考虑分层实验,同层互斥就是做的分桶,不同层正交可以避免不同实验之间的干扰,就可以做无数组实验。实验推全是逐步将新推荐策略应用到所有用户的过程,而反转实验是通过将部分用户回退到旧策略来评估新策略的有效性。粗排、精排会考虑用户特征、物品特征、统计特征来建模,同时考虑多个消费指标,然后得到一个最终的排序分数。通常会考虑用户的一些消费指标。

2024-05-02 23:41:55 243

原创 科研学习|研究方法——小波相干分析在时间序列分析中的应用

在某些情况下,两个时间序列中的共同行为是由一个时间序列驱动或影响另一个时间序列引起的,对于联合平稳时间序列,用于表征时间或频率相关行为的方法通常是互相关、(傅立叶)互谱和相干性。然而,时间序列通常是非平稳的,即它们的频率内容会随着时间而变化,对于这些时间序列,重要的是时频平面中的相关性或相干性。因此可以使用小波相干性来检测非平稳信号中常见的时间局部振荡,且在将一个时间序列视为影响另一个时间序列的情况下,可以使用小波交叉谱的相位来识别两个时间序列之间的相对滞后。

2024-04-28 16:03:34 1435 1

原创 科研学习|论文解读——CVPR 2021 人脸造假检测(论文合集)

deepfake的人脸伪造技术在互联网上广泛传播,并引起了严重的社会关注。近年来,如何检测此类伪造内容已成为一个研究热点,并提出了许多深度伪造检测方法。其中,大多数将深度伪造检测建模为普通的二元分类问题,即首先使用骨干网络提取全局特征,然后将其输入二元分类器(real/fake)。但由于这个任务中,真实图像和虚假图像之间的差异通常是微妙和局部的,我们认为这种香草解决方案不是最优的。在本文中,我们将深度伪造检测描述为一个细粒度的分类问题,并提出了一种新的多注意力深度伪造检测网络。

2024-04-28 15:42:39 2762

原创 人工智能|推荐系统——推荐系统经典模型YouTubeDNN

我们可以把召回模型的结构分为三层。输入层:输入层总共有四种特征。用户看过视频的 Embedding(embedded video watches)用户搜索的关键词的 Embedding 向量(embedded search tokens)用户所在的地理位置的特征(geographic embedding)适用于冷启动用户基本特征(example age, gender)

2024-04-27 22:11:16 784

原创 人工智能|推荐系统——推荐大模型最新进展

Embedding 已成为表示关于实体、概念和关联的复杂的信息的关键手段,并以简洁且有用的格式呈现。然而,它们通常难以直接进行解释。尽管下游任务利用这些压缩表示,但要进行有意义的解释通常需要使用降维或专门的机器学习可解释性方法进行可视化。本文解决了使这些嵌入更具解释性和广泛实用性的挑战,通过利用大语言模型(LLMs)直接与嵌入进行交互,将抽象向量转化为可理解的叙述。通过将嵌入注入LLMs,我们使复杂的嵌入数据可以进行查询和探索。

2024-04-27 21:56:52 1299

原创 人工智能|深度学习——多模态条件机制 Cross Attention 原理及实现

虽然之前写过 Attention 的文章,但现在回头看之前写的一些文章,感觉都好啰嗦,正好下一篇要写的 Stable Diffusion 中有 cross-attention,索性就再单拎出来简单说一下 Attention 吧,那么这篇文章的作用有两个:第一是为 Stable Diffusion 做补充,第二是为后续的 Vision Transformer 和 Swin Transformer 做铺垫。

2024-04-25 10:40:17 13713 1

原创 科研学习|论文解读——交叉注意力融合2024经典论文(配套模块和代码)

多模态学习和注意力机制是当前深度学习研究的热点领域之一,而,具有很大的发展空间和创新机会。作为多模态融合的一个重要组成部分,交叉注意力融合通过注意力机制在不同模块之间建立联系,促进信息的交流和整合,从而提升了模型处理复杂任务的能力,展现出其在多模态学习和聚类分析等领域的强大优势。本文盘点交叉注意力融合相关的13个技术成果,包含2024年最新的研究,这些模块的来源文章以及代码我都整理了,希望能给各位的论文添砖加瓦。

2024-04-25 10:21:39 5297

原创 心理学|变态心理学&健康心理学——躯体疾病患者的一般心理特点

患者除了内部器官有器质或功能障碍外,他们的自我感觉和整个精神状态也会发生变化。使人改变对周围事物的感受和态度,也可以改变患者对自身存在价值的态度。这种主观态度的改变,可以使患者把自己置于人际关系中的特殊位置上(好像已经或将要被人群抛弃)。

2024-04-22 16:28:47 292

原创 人工智能|tensorflow2.0框架——在TensorFlow2.0中使用TensorFlow1.0的代码

使用import tensorflow.compat.v1 as tf来导入TensorFlow 1.x的兼容性模块,并通过tf.disable_v2_behavior()来禁用TensorFlow 2.0的行为。

2024-04-21 16:53:20 261

原创 科研学习|论文解读——大模型综述!一文带你理清全球AI巨头的大模型进化史

大模型必然是未来很长一段时间我们工作生活的一部分,而对于这样一个与我们生活高度同频互动的“大家伙”,除了性能、效率、成本等问题外,大规模语言模型的安全问题几乎是大模型所面对的所有挑战之中的重中之重,机器幻觉是大模型目前还没有极佳解决方案的主要问题,大模型输出的有偏差或有害的幻觉将会对使用者造成严重后果。同时,随着 LLMs 的“公信度”越来越高,用户可能会过度依赖 LLMs 并相信它们能够提供准确的信息,这点可以预见的趋势增加了大模型的安全风险。除了误导性信息外,

2024-04-21 16:39:19 2528

原创 科研学习|科研软件——如何使用SmartPLS软件进行结构方程建模

SmartPLS是一种用于结构方程建模(SEM)的软件,它可以用于定量研究,尤其是在商业和社会科学领域中,如市场研究、管理研究、心理学研究等。

2024-04-14 22:47:43 3379 1

原创 人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目

通过本项目,我们使用了机器学习模型预测了客户的信用卡办卡意愿,并通过Django实现了数据的可视化展示。这使得银行和金融机构能够更好地理解客户行为模式,并做出相应的业务决策。

2024-04-13 22:12:09 873 1

人工智能-大模型-基于SuperAGI 专注中文领域的大模型AI应用框架

基于SuperAGI 专注中文领域的大模型AI应用框架 以下特性来源于原SuperAGI: 生成和部署自主人工智能代理 使用工具扩展智能代理能力集 无缝并发运行任务、智能代理 图形化交互页面 多向量数据库支持 多模态智能代理 智能代理轨迹微调 智能代理监控 Looping Detection Heuristics Concurrent Agents 资源管理 已新增主要特性: 接入讯飞星火 PythonSDK 新增基于星火大模型的默认交互工作流 优化并新增内置中文Prompts 优化部分工具Tool以支持中文场景 去除部分内置国外插件

2024-10-21

人工智能-大模型-PDF解析(文字,章节,表格,图片,参考),基于大模型(ChatGLM2-6B, RWKV)+langchai

PDF解析(文字,章节,表格,图片,参考),基于大模型(ChatGLM2-6B, RWKV)+langchain+streamlit的PDF问答,摘要,信息抽取 介绍 实现对PDF解析,将给定的PDF结构化成以下几个部分。 文字 总标题,章节标题和章节对应的文字内容 图片 图片和图片标题 表格 表格和表格标题 参考 参考 在这个项目中还有两个部分用到了大模型 使用了RWKV-Raven-7B对PDF做摘要。 是用了ChatGLM2-6B对参考文献做信息抽取。 将参考文献结构化成字典的格式,字典包含了”作者“,”标题“,”年份“。 在这个项目中还有实现了一个对PDF问答的例子。

2024-10-21

人工智能-大模型-基于大语言模型(LLM)和多智能体(Multi-Agent),探究AI写小说能力的边界

基于大语言模型(LLM)和多智能体(Multi-Agent),探究AI写小说能力的边界 近年来,AI在文学创作领域取得了显著进展。从AI微小说大赛到阅文妙笔,再到Midreal AI,这些案例都证明了AI在文学创作上的巨大潜力。作为一名网络文学爱好者,我希望通过大语言模型与多智能体技术,来开发一款能够自动生成网络小说的应用。 文献和实践表明,LLM 在转换和审阅上表现较好,而在计划阶段存在缺陷。具体体现为

2024-10-21

人工智能-大模型-基于InternLM2大模型的离线具身智能导盲犬

基于InternLM2大模型的离线具身智能导盲犬 背景 然而,培养一只合格的导盲犬需要花费大量的时间。从幼犬的筛选、基础训练到专业技能的掌握,每一个阶段都需要有专业的训练师、场地和设备以及大量的时间和成本投入,培养一只传统导盲犬的成本可能高达20万元以上。 四足机器人技术的快速发展使得机器狗代替传统导盲犬成为可能。机器狗导盲犬通过先进的传感器和算法,可以精确感知周围环境并做出智能决策,不受天气、时间或疲劳的限制。它们可以适应各种复杂环境,包括室内、室外、拥挤的城市街道等。开发一套程序可以以近乎零成本的方式迁移到无数台机器狗,使得机器导盲犬的成本相比传统导盲犬大大降低。

2024-10-21

人工智能-大模型-基于CNN训练的一套 "端到端" 的验证码识别模型,使用深度学习+训练数据+大量计算力

基于CNN训练的一套 "端到端" 的验证码识别模型,使用深度学习+训练数据+大量计算力 特性 端到端,不需要做更多的图片预处理(比如图片字符切割、图片尺寸归一化、图片字符标记、字符图片特征提取) 验证码包括数字、大写字母、小写 采用自己生成的验证码来作为神经网络的训练集合、测试集合、预测集合 纯四位数字,验证码识别率高达 99.9999 % 四位数字 + 大写字符,验证码识别率约 96 % 深度学习框架pytorch + 验证码生成器ImageCaptcha

2024-10-21

人工智能-大模型-基于大语言模型的专属知识库

基于大语言模型的专属知识库 项目功能 基于embedding的文档搜索,每次只会只搜索最相关的文档,不会把所有的文档都喂给gpt 提供网页爬取和文本导入功能,可以导入自己想要的内容 提供数据管理界面,可以看到自己的数据,以及对数据删除的功能 提供聊天界面,支持保存上下文 支持日常聊天,文章总结,问题询问等功能

2024-10-21

人工智能-大模型-基于baichuan-7b的多模态大语言模型

基于baichuan-7b的多模态大语言模型 局限性 受限于较小的参数量,羽人-百川 7B 在数值计算、逻辑推理类任务的效果不尽人意,同时在多模态任务上也无法完全发挥出 CLIP 的优势,存在一定的幻觉现象。如果您有业务场景的真实需求,可以与我们联系,我们还有更大参数量的闭源模型可以提供。未来,我们也会考虑开源更大参数量的模型。 当前版本的羽人-百川 7B 尚未经过人类偏好对齐,在输出内容上存在一定的随机性,同一问题的多次回答可能在性能上有明显的差异,后续我们将提供经过人类偏好对齐的模型,以提升模型的稳定性。

2024-10-21

人工智能-大模型-基于大模型+知识图谱的知识库问答

基于大模型+知识图谱的知识库问答 初始模型: 知识种子图图谱模型:paddlenlp-model-zoo-uie 所用模型类型:'information extraction' 训练模型:SPN4RE-NYT—exact 训练集占比:50% 验证集占比:10% 测试集占比:40% 数据来源: 初始数据:《舰艇损管和潜水技术》 扩充数据:《舰船损管技术》等 数据标注 利用doccanco标注不同类型的数据大约100条作为微调uie的初始数据,在uie进行初次抽取后,针对数据中效果较差的部分进行二次标注微调。 训练设备:3090 * 2

2024-10-21

人工智能-大模型-基于已有基座模型微调的算命大模型

基于已有基座模型微调的算命大模型 我们将使用两种不同的模型分别进行开发:基于Chinese-llama-alpacha模型和基于chatGLM3模型。同时,我们将对它们进行比较,以了解它们在算命服务中的表现差异。数据收集方面,我们将使用爬虫技术收集网络上的相关问答对,同时利用书籍、博客等信息源获取更多的算命内容,并结合ChatGPT3.5API生成更多的问答对,以拓展数据集。 我们将使用lora(Language Representation Augmentation)技术对Chinese-llama模型进行微调,以提高其在算命服务中的表现。lora技术能够通过引入多样化的语言表征,增强模型的语言理解能力,使其在特定领域表现更好。 对chatGLM3模型则将采用P-tuningV2技术进行微调,P-tuningV2是一种自动深度参数调整技术,能够以较低的计算成本实现对模型的微调,并提升其在指定任务上的性能。

2024-10-21

人工智能-大模型-基于大语言模型和 RAG 的知识库问答系统

基于大语言模型和 RAG 的知识库问答系统 开箱即用:支持直接上传文档 / 自动爬取在线文档,支持文本自动拆分、向量化和 RAG(检索增强生成),有效减少大模型幻觉,智能问答交互体验好; 模型中立:支持对接各种大模型,包括本地私有大模型(Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 腾讯混元 / 字节豆包 / 百度千帆 / 智谱 AI / Kimi 等)和国外公共大模型(OpenAI / Claude / Gemini 等); 灵活编排:内置强大的工作流引擎和函数库,支持编排 AI 工作过程,满足复杂业务场景下的需求; 无缝嵌入:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度。

2024-10-21

在线画板,基于 Canvas 和 JavaScript 的画图工具.zip

javascript

2024-09-29

基于javascript的身份证号码验证.zip

javascript

2024-09-29

基于JavaScript DOM操作的同济大学选课脚本.zip

javascript

2024-09-29

基于ActionScript以及JavaScript语言的标绘扩展符号库.zip

javascript

2024-09-29

基于 Webpack 的灵活快速的打包工具,帮助稳定高效构建现代 JavaScript 应用.zip

javascript

2024-09-29

基于ArcGIS JavaScript API 4.2开发的绘图扩展.zip

javascript

2024-09-29

基于 Electron + javascript 实现的桌面计算器应用.zip

javascript

2024-09-29

基于 JavaScript 开发灵活的数据应用.zip

javascript

2024-09-29

基于 AST 变换的简易 Javascript 反混淆辅助工具.zip

javascript

2024-09-29

Actions自动运行ziye12基于JavaScript的企鹅阅读脚本.zip

javascript

2024-09-29

人工智能-扩散模型-基于扩散模型stable diffusion的T恤图案设计和基于HR-VITON的虚拟试衣项目

基于扩散模型stable diffusion的T恤图案设计和基于HR-VITON的虚拟试衣项目 计算机视觉课程设计项目:基于Stable Diffusion的T-shirt图案设计和虚拟换衣技术 基本实现方法: Stable Diffusion结合Dreambooth实现文本指导下的T-shirt图案生成; 利用U2NET模型对人像和衣服掩码进行分割; 借鉴HR_VITON框架实现虚拟换衣。

2024-10-28

人工智能-机器学习-基于各种机器学习和深度学习的中文微博情感分析

基于各种机器学习和深度学习的中文微博情感分析 项目说明 训练集10000条语料, 测试集500条语料 使用朴素贝叶斯、SVM、XGBoost、LSTM和Bert, 等多种模型搭建并训练二分类模型 前3个模型都采用端到端的训练方法 LSTM先预训练得到Word2Vec词向量, 在训练神经网络 Bert使用的是哈工大的预训练模型, 用Bert的[CLS]位输出在一个下游网络上进行finetune。预训练模型

2024-10-24

人工智能-大模型-基于DPO算法微调语言大模型,简单好上手

基于DPO算法微调语言大模型,简单好上手 在使用之前请确保您已经按照格式准备了数据,下面需要修改以下路径,即可运行该项目,在dpo_train.py的run函数下: 注意file是一个json文件。 file = '' model_file = '' model_save_path = '' output_dir = '' 在命令行中: python dpo_train.py 后台启动该项目: ps: 在后台挂载启动,这样关了服务器代码还是在运行的,不会断掉。 nohub python dpo_train.py > train_log.log 启动tensorboard查看日志: 确保已经安装了tensorboard pip install tensorboard -i https://pypi.tuna.tsinghua.edu.cn/simple tensorboard --logdir='your path'

2024-10-21

人工智能-大模型-基于大模型的企业内部知识库和工具流系统,web界面,完全局域网内网部署(外网隔离)

基于大模型的企业内部知识库和工具流系统,web界面,完全局域网内网部署(外网隔离) 对于本项目,或者说该类型的应用场景,应该着眼于如下三个方面的深入开发: 1、文档智能 —— 更加智能的处理各种类型文档,尤其是复杂文档的ocr、layout解析等。本项目代码仓对应 backend/scholar/document process 2、RAG —— 不过这一块有很多优秀的开源项目,学术界目前进展也很蓬勃。本项目代码仓对应 backend/scholar 以上两块其实我理解行业会不断涌现出优秀的作业,大家借鉴就好,但第三点可能是需要致力于这个业务方向的同学特别思考的 3、符合信创要求的llm本地部署和加速方案 —— 有外网隔离要求的业务场景大部分可能都是国企、政务了,“信创”要求是早晚躲不过的……这方面我个人认为应该特别关注基于arm架构的cpp迁移方案,目前行业内也有不少开源方案可供参考。

2024-10-21

人工智能-大模型-基于大模型ChatGLM,微调方式为LORA,集SFT、RM、PPO算法为一体项目

基于大模型ChatGLM,微调方式为LORA,集SFT、RM、PPO算法为一体项目 要求 Python 3.8+ 和 PyTorch 1.13.1 Transformers、Datasets、Accelerate、PEFT 和 TRL protobuf、cpm_kernels 和 sentencepiece jieba、rouge_chinese 和 NLTK(用于评估) gradio 和 mdtex2html(用于 web_demo.py) 和强大的 GPU! 开始 数据准备(可选) 有关数据集文件格式的详细信息,请参阅查看。您可以使用单个文件或包含多个文件的数据集加载脚本来创建自定义数据集。data/example_dataset.json

2024-10-21

人工智能-大模型-基于外挂知识库的大模型问答

基于外挂知识库的大模型问答 主要流程 1.加载LLM、加载embedding模型、加载reranker模型 2.向量知识库构建、BM25知识库构建 3.多路召回与排序,包括bm25召回、bge召回、gte召回,然后使用bge-reranker进行精排,选取得分最高的top-3与问题同时作为输入到llm的上下文。并使用jieba分词对于问题进行分词,加入一层关键词判断,提高匹配精度,同时可根据关键词判断是否有答案。

2024-10-21

人工智能-大模型-基于大模型的高质量情感虚拟人系统

基于大模型的高质量情感虚拟人系统 基于大模型的高质量情感虚拟人系统(Gradio+FUNASR+ChatGLM2-6B+GPT-SOVITS+EAT+GFPGAN)

2024-10-21

人工智能-大模型-基于yolov4的老鼠位置检测,并且裁剪了模型大小

基于yolov4的老鼠位置检测,并且裁剪了模型大小 基于pytorch+cuda框架开发 总体框架使用yolov4 backbone使用ghost neck部分使用mobilenetv2的InvertedResidual替换卷积层 跟踪使用SORT(simple online realtime track) 模型由yolov4的240M->30M.Neck SPP部分不变.FPN部分减少了特征层层数.Head部分还暂未修改 跟踪只是基本的卡尔曼滤波+匈牙利匹配,匈牙利匹配是根据iou,这段刚开始准备.准备移植deep sort的马氏距离

2024-10-21

人工智能-大模型-一个基于大模型的口语对话顾问

一个基于大模型的口语对话顾问 本项目的目标是构建一个英语练习环境。 项目的目标是能够构造一个应用,你可以自由地和机器人围绕某个话题使用特定语言进行对话,机器人能够像真人一样,尝试了解你支支吾吾的表达中蕴含的意思,并且尝试引导你进行正确的表达,这些引导内容包括直接给出正确的表达,并且跟你确认你的意图是否和它猜测的一样。机器人也能够推动话题的发展,而不是被动的接收你的说辞。从而最终起到提高语言表达能力的作用。

2024-10-21

人工智能-大模型-一个基于大模型微调的中文医疗问答机器人应用

一个基于大模型微调的中文医疗问答机器人应用 运行 下载模型后,将config.py里的model_path更改为模型路径 控制台交互:python gpt_cli.py 可视化网页界面交互:streamlit run chat_app.py

2024-10-21

人工智能-大模型-基于 B 站评论区数据构建大语言模型训练用对话数据集

基于 B 站评论区数据构建大语言模型训练用对话数据集 环境 Python 3.7+ (自测环境为 Python 3.10.4) 使用 pip install -r requirements.txt 安装相关依赖 一个可用的 B 站账号

2024-10-21

人工智能-大模型-基于大语言模型的自动综述生成

基于大语言模型的自动综述生成 下述密钥必须由使用者自行提供。 The following keys must be provided by the user themselves. 谷歌学术检索 Google Search API https://serpapi.com/ 大语言模型(二选一或均提供) LLM API (Choose one or both) Claude2 https://claude.ai/chats 支持Open AI 格式的模型地址和密钥 URL and Key compatible with OpenAI format 爱思唯尔开发者 Elsevier Research Products APIs https://dev.elsevier.com/

2024-10-21

人工智能-大模型-基于LLAMA2的增量预训练藏文大语言模型

基于LLAMA2的增量预训练藏文大语言模型 本项目通过基于LORA的参数高效微调方法,训练了Tibetan-Llama2和Tibetan-Alpaca藏文大语言模型,分别包括7B和13B两种规模,以上模型是基于Llama2模型架构构建的,经过较大规模数据的增量预训练和指令微调,具备了对藏文的深入理解和处理能力。

2024-10-21

人工智能-大模型-基于大语言模型的资源查找助手

基于大语言模型的资源查找助手 先去修改 base/__init_.py 里面的配置文件,配置openai的key和网址信息 然后执行pip install -r requrements.txt 最后运行即可

2024-10-21

人工智能-大模型-利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

2024-10-21

人工智能-大模型-基于internlm-chat-7b的保险知识大模型微调

基于internlm-chat-7b的保险知识大模型微调 保险知识问答助手数据集采用中的ChineseNlpCorpus提供的包括用户提问、网友回答、最佳回答,共计 588000 余条,数据集样例: "input": "最近在安邦长青树中看到什么豁免,这个是什么意思?" "output": "您好,这个是重疾险中给予投保者的一项权利,安*长青树保障责任规定,投保者可以享受多次赔付,豁免等权益。也就是说不同轻症累计5次赔付,理赔1次轻症豁免后期所交保费,人性化的设计,无需加保费。" "input": "和团队去北极探险,有没有针对这方面的HUTS保险呢"

2024-10-21

人工智能-大模型-基于大模型的知识库问答 - Large model-based knowledge base Q&A

基于大模型的知识库问答 | Large model-based knowledge base Q&A 2. 运行使用 2.1 以WebUI运行 python webui_demo.py 2.2 以CLI运行 python cli_demo.py 2.3 以API运行 对文本进行编码并进行测试: python cli_demo.py 修改api_demo.py 的vs_path,然后以API运行使用: python api_demo.py 客户端请求: python client.py

2024-10-21

人工智能-大模型-基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function

基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践 特性 多轮对话管理:能够处理复杂的对话场景,支持连续多轮交互。 意图识别:准确判定用户输入的意图,支持自定义意图扩展。 词槽填充:动态识别并填充关键信息(如时间、地点、对象等)。 接口槽技术:直接与外部APIs对接,实现数据的实时获取和处理。 自适应学习:不断学习用户交互,优化回答准确性和响应速度。 易于集成:提供了详细的API文档,支持多种编程语言和平台集成。

2024-10-21

人工智能-大模型-基于自回归模型与现有的开源大模型,训练小说大模型

基于自回归模型与现有的开源大模型,训练小说大模型 Novel-GPT 是一个开源的网文大语言模型,本项目的目的是基于现有的开源大模型 Baichuan,qwen 来进行领域预训练,后续如果有更好的基座会进行切换。 经过多次实验,baichuan2的效果很差,qwen是目前最好的开源基座,后面整体会全部切换到qwen。 本项目依托于网文数据,主要进行以下几个方面的工作: 基于论文摘要数据的微调,原因在于小说任务难以评测,用论文摘要任务来验证代码以及模型能力 基于网文数据进行领域 Pretain 支持主流的开源大模型,如 qwen, baichuan1, baichuan2, 模型架构优化:采用向量融入的方式,针对小说场景下的生成问题进行模型结构优化,致力于解决小说超长文本问题。 -- 核心改进,待开源 开源小说预训练数据集,论文摘要数据集

2024-10-21

人工智能-大模型-知识库、大语言模型、医疗知识库构建、基于大语言模型的知识库

知识库、大语言模型、医疗知识库构建、基于大语言模型的知识库 创建知识库 # create_kb.py 1.创建数据库,并将库文件置于自定义位置 2.利用text2ve将文本转为向量,文本与向量导入知识库中 构建搜索 同样利用text2vec将待匹配文本转为向量与库中向量进行匹配 大模型 搜索结果与问题转为特定的prompt,输入大语言模型进行答案生成

2024-10-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除