python3__自然语言处理__jieba分词

123

2019-06-13 22:29:08

阅读数 4

评论数 0

python3__Scipy__积分/最小二乘/图像变换

SciPy是numpy库基础之上增加了众多的数学、科学以及工程计算中常用函数的库。SciPy库依赖于numpy,提供了便捷且快速的n维数组操作。SciPy库的构建与numpy数组一起工作,并提供了许多友好和高效的处理方法。包括:统计、优化、整合以及线性代数模块、傅里叶变换、信号和图像图例,常微分方...

2019-06-01 17:22:41

阅读数 4

评论数 0

python3__深度学习__受限玻尔兹曼机

1.什么是受限玻尔兹曼机 玻尔兹曼机是一大类的神经网络模型,但是在实际应用中使用最多的则是受限玻尔兹曼机(RBM)。受限玻尔兹曼机(RBM)是一个随机神经网络(即当网络的神经元节点被激活时会有随机行为,随机取值)。它包含一层可视层和一层隐藏层。在同一层的神经元之间是相互独立的,而在不同的网络层...

2019-05-30 09:50:06

阅读数 19

评论数 0

python3__pandas__预处理常用操作

1.pandas预处理的常用操作 链接的文章已经讲解的相对比较清楚了,包括: (1)缺失值处理:dropna(),fillna() (2)离散化:cut(),qcut() (3)分组聚合:groupby() (4)数据透视表:pivot_table() (5)排序:sort_valu...

2019-05-29 14:08:28

阅读数 15

评论数 0

python3__深度学习__过拟合/欠拟合的处理

1.过拟合定义+处理 1.1 过拟合概述(低偏差,高方差) 定义:过拟合简单的描述就是在训练集上的表现很好,但在未见过的测试集上的表现却较差。专业一点的定义就是:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h'也属于H,使得在训练样例上h的错误率小于h',但是在整个实例分...

2019-05-23 09:12:51

阅读数 16

评论数 0

认知科学__认知物理学__粗糙集理论(Rough理论)

1.粗糙集的来源(定义) 面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识?我们如何将所学到的知识去粗取精?什么是对事物的粗线条描述?什么是细线条描述?糙集合论回答了上面的这些问题 2.基本概念 2.1 知识 一种对集合A的划分就对应着关于A中元素的一个知识。 假设...

2019-05-02 11:18:32

阅读数 23

评论数 0

python3__深度学习__卷积神经网络(CNN):VGGNet / Finetuning

VGGNet是于ICLR 2015(International Conference on Learning Representations, 2015)上展示的一种新的卷积神经网络,在ImageNet上达到了非常高的辨识率,且能够在以DCNN(Deep Convolutional Network...

2019-04-21 20:49:52

阅读数 29

评论数 0

python3__深度学习__TensorFlow__模型的保存与恢复/tensorboard可视化

0.概要 通常情况下,我们需要使用训练好的模型来预测或者分类现有数据;但存在一个问题,即每次应用模型的时候都需要重新训练模型,这种方式将会极大提高模型训练成本,因此,需要通过tensorflow深度学习框架对训练完毕的模型进行存储。 1.粗粒度的模型保存与恢复 1.1 单次模型的保存与恢...

2019-04-19 15:56:08

阅读数 28

评论数 0

数据预处理——缺失值处理

1.缺失值产生原因 数据预处理过程常常占据模型构建与分析过程中70%的工作量。在实际的各种场景当中,出现缺失值的情况经常出现甚至是不可避免的,这主要是由于信息系统设计的不完备以及数据库设计过程中完整性定义有缺陷。总体可总结为“机械原因”和“人为原因”。缺失值的存在导致“系统丢失了大量的有用信息...

2019-03-30 16:15:00

阅读数 127

评论数 0

python3__损失函数__交叉熵(softmax)

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/tsyccnh/article/details/79163834 </div> <div...

2019-03-01 10:19:39

阅读数 132

评论数 0

python3__深度学习:卷积神经网络(CNN)__LeNet5:支票高效手写数字体识别

1.LeNet5基本概念 在计算机视觉中卷积神经网络取得了巨大的成功,按在工业上以及商业上的应用非常多,一种商业上最典型的应用就是识别支票上的手写数字的LeNet5神经网络。LeNet5 这个网络虽然很小,但是它包含了深度学习的基本模块:卷积层,池化层,全链接层,是其他深度学习模型的技术。 ...

2019-02-22 10:00:51

阅读数 161

评论数 0

python3__深度学习:卷积神经网络(CNN)__构成/原理/正向与反向传播

1.CNN的基本构成 一个CNN包含一个输入层、一个卷积层、一个输出层,但是在真正使用的时候一般会使用多层卷积神经网络不断的提取特征,特征越抽象,越有利于识别(分类)。CNN一般包括以下几个部分: 输入层:数据输入 卷积层:使用给定核函数对输入数据进行特征提取,并依据核函数的数据产生若干个...

2019-02-21 11:33:14

阅读数 226

评论数 0

python3__深度学习/机器学习__图像识别:OpenCV之级联分类器CascadeClassifier

1.理论说明 Haar-like矩形特征是用于物体检测的数字图像特征。这类矩形特征模板由两个或多个全等的黑白矩形相邻组合而成,而矩形特征值是白色矩形的灰度值的和减去黑色矩形的灰度值的和,矩形特征对一些简单的图形结构,如线段、边缘比较敏感。如果把这样的矩形放在一个非人脸区域,那么计算出的特征值应...

2019-02-19 09:51:32

阅读数 150

评论数 0

haarcascades---各种分类器xml文件下载地址

在进行人脸识别和提取的过程中需要训练好的分类器文件,即xml文件,下载链接如下: https://github.com/opencv/opencv/tree/master/data/haarcascades

2019-02-18 20:31:34

阅读数 166

评论数 0

python3__常用激活函数(sigmod,Tanh,ReLU,LReLU,PReLU,RReLU,softmax,Maxout)

1.为什么需要激活函数 在神经网络或者逻辑回归当中都使用到了激活函数。在神经网络中,每个神经元节点接收上一层神经元的输出值作为本神经元的输入值,并将输出值继续向下层传递。那么,在上层神经元节点的输出与下层神经元节点的输入之间具有一个函数关系,这个函数被称为激活函数。 若不用激活函数或激活函数...

2019-01-19 20:55:18

阅读数 244

评论数 0

Tensorflow调用tf.train.shuffle_batch函数报错“OutOfRangeError: RandomShuffleQueue”

1.报错内容: OutOfRangeError (see above for traceback): RandomShuffleQueue '_1_shuffle_batch/random_shuffle_queue' is closed and has insufficient elemen...

2019-01-18 22:24:41

阅读数 345

评论数 0

python3__机器学习__回归分析(以深度学习框架TensorFlow实现)

0.线性回归的基本假定 ①所有解释变量之间互不相关(无多重共线性) ② ③假设变量(偏差)与随机变量不相关 ④随机扰动项满足正太分布 ⑤数据基本服从线性回归 1.一元线性回归[数据计算方式] 1.1 批量输入 and 批量计算 下部程序中在进行最后的数值迭代过程中,使用的是批...

2019-01-14 09:19:18

阅读数 94

评论数 0

python3__深度学习:TensorFlow__数据的生成与读取(主要针对图像处理)

1.CSV文件(提供图像地址和标签) 1.1 创建 import os path = "pic" filenames = os.listdir(path=path) strText = "" with open(f...

2019-01-05 20:09:36

阅读数 654

评论数 0

python3__深度学习:TensorFlow__常用基本概念和函数

1.转载博客 https://blog.csdn.net/lenbow/article/details/52152766 该博客内容相对来说十分的全面,但随着TensorFlow版本的提高,有的函数发生了修改,或者添加了一些函数,特在下边进行说明。 2.补充函数 tensorflow...

2019-01-02 14:34:26

阅读数 76

评论数 0

python3__机器学习__神经网络基础算法__偏执项b

1.前言 很多人不明白为什么要在神经网络、逻辑回归中要在样本X的最前面加一个1,使得 X=[x1,x2,…,xn] 变成 X=[1,x1,x2,…,xn] 。因此可能会犯各种错误,比如漏了这个1,或者错误的将这个1加到W·X的结果上,导致模型出各种bug甚至无法收敛。究其原因,还是没有理解这个...

2019-01-01 16:25:48

阅读数 158

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭