摘要:
了解用户想要什么信息是信息科学和技术面临的最大挑战。隐式反馈是解决这一挑战的关键,因为它允许信息系统了解用户的需求和偏好。然而,可用的反馈往往是有限的,而且其解释也很困难。为了应对这一挑战,我们提出了一项用户研究,探索追踪眼动是否可以解开相关性和相关性决策固有的部分复杂性。将阅读18篇新闻文章的 30名参与者的眼睛行为与他们在话语层面上主观评价的理解力和兴趣进行了比较。 使用线性回归模型,眼球追踪信号解释了49.93%(可理解性)和 30.41%(兴趣)的方差 (p < .001)。 我们得出结论,眼睛行为提供了超准确性的隐式反馈,从而为个性化信息系统提供了新形式的适应和交互支持。
1.引言
理解和了解用户在信息方面的需求是信息系统面临的最大挑战(Saracevic, 2007)。文本挖掘技术目前用于通过估计文档是否与查询相似(信息检索)、是否在相似的人或朋友中流行(协同过滤)或与用户模型相似(认知过滤)来推断用户的信息需求。尽管这些技术无疑是成功的,但它们似乎被一个神奇的障碍所困扰:它们预测信息价值的潜力有限(Said & Bellogín, 2018; Voorhees, 2002)。当前的技术难以适应用户之间的差异,例如他们的知识和偏好,以及用户内部的差异,例如不断变化的信息需求和兴趣(Hill, 1995)。由于每个用户的信息价值不同,并且会随时间变化(Belkin, 2008; Saracevic, 2007),因此需要持续反馈以更好地预测信息是否以及何时对用户有价值(Ghorab, 2013; Liu, 2020)。
要求用户就他们想要的信息提供大量和持续的输入是不可能成功的。相反,不需要用户进行任何交互的隐式反馈是一个更可行的选择(Barra, 2016; Ghorab, 2013; Liu, 2020)。基本的在线措施已经成功地用于文本挖掘。 来自点击流数据、浏览数据和查询文本关系的特征将二进制排名精度提高到高达 31%(Agichtein, 2006)、预测分级相关性评估高达 r = .411(Guo & Agichtein, 2012)。此外,生理信号(Barral, 2016 ),尤其是眼动追踪(Li,2018)有望扩展这些结果(Cole, 2015)。对于相关和不相关的结果,人类的注意力遵循一种独特且可识别的模式(Li, 2018)。眼球追踪数据可以显示关注了哪些搜索结果或文档的哪些部分,并将其用作查询扩展、优化(Buscher, 2012)甚至构建(Ajanki, 2009)。 在二进制文本挖掘精度上,可以通过眼动追踪检测到相关性,精度为 64%(Liu,2014)、74%(Gwizdka,2014)、80%(Bhattacharya,2020)和 86%(Gwizdka,2017)。
从眼动数据预测(二元)相关性决策的表现证实了其在隐式反馈方面的潜力。尽管如此,相关性的直观概念包含了人类判断和经验的巨大复杂性。用户在判断相关性时会应用一系列标准,例如文档的时事性、可信度、风格和阅读水平 (Schamber, 1994) 以及电影的故事和视觉效果 (Adomavicius & Kwon, 2015)。 人类判断的这种巨大复杂性随后形成了相关的认知情感体验(Ruthven,2021)。在一个不断发展的交互会话中,一套特定的元认知判断和体验展开了,比如用户对处理动态的反思。认知上的轻松通常与满意的感觉相关(Al-Maskari & Sanderson, 2010),而中间的复杂性似乎与兴趣的感觉相关(Dubey & Griffiths, 2020; van der Sluis, 2014)。在互动过程中,这些认知-情感判断和体验的重要性表明了 "超越传统准确性指标 "的反馈潜力(McNee, 2006)
眼动追踪提供了一种独特的潜力,可以解开相关性和相关性决策所固有的部分复杂性。众所周知,从 Hess 和 Polt (1960, 1964) 的早期工作开始,眼睛可以反映认知处理和兴趣价值的各个方面。随后的研究强调,眼睛特别善于反映瞬间的认知过程(Just & Carpenter,1980;Miller,2015;Rayner,1998)。其中,眼睛停留在难以处理的单词或区域上的时间更长(Rayner,2006)。人们认为,感兴趣的个人引导注意力并利用认知资源来保持中等的信息获取率。他们提供持续反馈的能力使得追踪眼睛很可能揭示出感兴趣的个体处理动态和注意力模式。
尽管确定了眼动追踪数据用于隐式反馈的用途和潜力,但尚不清楚眼睛的独特潜力是否可以作为(二元)相关决策、认知处理或兴趣的指标,也不清楚这些构造的效果如何使用眼动数据来区分。类似于行为轨迹数据(Van der Sluis,2017)和生理信号(van den Broek,2011)中固有的模糊性,眼动追踪数据很难解释。这些认知过程是否通过观察阅读过程中的眼睛行为变得明显尚不清楚,因为许多认知过程交织在一起,当跨单词、句子和话语水平组合时,观察到的效果通常很小且不明显(Rayner,2006)。此外,眼球追踪数据本质上是嘈杂的,特别是在生态有效的环境中。头部位置和距离、照明条件和低采样频率可能会有显着变化,尤其是对于廉价的消费市场眼动仪。鉴于这些挑战,通常会在高度受控的设置和刺激下提出和探索关于认知-情感过程的眼动追踪反馈 (Rayner et al., 2006),这引发了对其在文本挖掘等应用环境中可行性的质疑。
结合眼睛为隐式反馈提供的机遇和挑战,本文提出了一项研究,检查跟踪眼睛是否可以提供超越传统准确性指标的反馈。我们探讨了如何识别和区分可理解性和兴趣,并讨论了这些方面如何反馈给文本挖掘。我们根据兴趣的情绪评估理论来构建兴趣,该理论将兴趣视为由外部刺激引起的瞬间兴趣(Silvia,2006)。这种框架与情境兴趣的概念化一致,但与更持久的个人或个人兴趣形成对比(Shin & Kim,2019;Sinnamon,2021)。它还假设,在可理解的范围内,一定程度的处理难度有助于产生兴趣(Sinnamon,2021;van der Sluis,2014)。
通过探索眼睛揭示可理解性和兴趣的能力,本研究旨在在人类信息交互的背景下,在认知活动和兴趣价值之间对眼睛行为的解释带来经典和长期存在的差异。
2.背景:眼睛行为
在阅读时,我们的眼睛遵循着一种独特的、可识别的模式。手头的任务(如阅读)和上下文(如文本)会影响眼睛行为的主要特征(Luke & Henderson,2013;Rothkopf et al.,2007)。尽管这意味着眼睛行为主要由任务和文本决定,但更高阶的认知过程——如理解和兴趣——可以改变这些行为的特定特征(Luke & Henderson, 2013)。赫斯和波尔很早就发现了眼睛反映高阶心理过程的潜力:对视觉信息的兴趣(1960)和由解决问题困难引起的心理活动(1964)。这种区别反映了(a)认知控制假说(或:眼-心联系),该假说认为“只要一个单词正在被加工,眼睛就会一直注视着这个单词”(Just & Carpente