关于SVM

本文介绍了支持向量机(SVM)的基本概念,特别是线性SVM寻找最大边缘的超平面。在二元分类问题中,SVM的目标是找到使间隔最大的超平面。通过拉格朗日乘子法,将原始优化问题转化为对偶问题,最终求解SVM的参数w和b。文章还展示了SVM的简单代码实现。
摘要由CSDN通过智能技术生成

1.SVM相关知识

首先我们知道线性SVM是这样一个分类器,它寻找具有最大边缘的超平面。考虑一个包含N个训练样本的二元分类问题,类标签为-1或者1。 SVM分类器的决策边界为:


即为下图虚线所示:
这里写图片描述
其中w的方向与虚线垂直(可证明)。通过调整决策边界的参数w和b,得到两个超平面。

  • 其中在虚线上方且与虚线平行的超平面L1为:
    这里写图片描述

  • 其中在虚线下方且与虚线平行的超平面L2为:
    w*x+b=-1
    令x1是L1上的一个数据点,令x2是L2上的一个数据点,将x1和x2代入以上公式中,则有:
    这里写图片描述
    两式相减可得:
    这里写图片描述
    其中d为超平面L1与超平面L2之间的直线距离。 我们的目标是使得d最小。

2.学习线性SVM模型

SVM的训练阶段即从训练数据中估计参数w跟b。选择的参数必须满足:
这里写图片描述下面的1改为-1 (1)
即类标签为1的训练实例都必须位于超平面L1上或者位于它的上方,而那些类标签为-1的训练实例必须位于超平面L2上或者L2的下方。
对上述两个不等式可概括为:
这里写图片描述(2)
我们的目标是最大化d,即最小化||w||,等价于最小化下面的目标函数:
这里写图片描述
那么SVM的任务即可以描述为如下优化问题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值