Task 11 综合练习(2021.1)
Pandas学习手册
写在前面:
这一个月来的pandas学习,衔接了十一月的numpy和一月份的LeetCode,本以为是普普通通的pandas学习,就简单复习一下,哎,你猜怎么着,我是万万没想到啊,之前学的那就叫认识了个名词,在DW各位助教和群里大神还有队长楠楠的帮助下,这个小菜鸟,有了飞速的成长,毫不夸张的说,这一个月所学到的东西,占到了2020年全年的六成以上,光是在群里不讲话看看他们的解题思路就能学到很多东西。当然也感谢耿老师的开源学习资料,对,就上面那个蓝色的链接(pandas学习手册),虽然今天它崩了
不过问题不大, 已经学完了(机智),最后呢感谢各位的帮助,认识大家都很开心啊,虽然这段时间我的生活过的比较坎坷
,但是学习上还好是没跑偏,在这其中呢,也少不了各位的帮助和助教的鼓励。这是这期的结束,同时,也是新一年学习的开始,大家,一起加油呀!
学习大纲:
目录
习题链接:点击这里
import numpy as np
import pandas as pd
【任务四】显卡日志
下面给出了3090显卡的性能测评日志结果,每一条日志有如下结构:
Benchmarking #2# #4# precision type #1# #1# model average #2# time : #3# ms
其中#1#代表的是模型名称,#2#的值为train(ing)或inference,表示训练状态或推断状态,#3#表示耗时,#4#表示精度,其中包含了float, half, double三种类型,下面是一个具体的例子:
Benchmarking Inference float precision type resnet50 resnet50 model average inference time : 13.426570892333984 ms
请把日志结果进行整理,变换成如下状态,model_i用相应模型名称填充,按照字母顺序排序,数值保留三位小数:
【数据下载】链接:点击这里 提取码:4mui
变形
按照字母顺序排序,数值保留三位小数:
【任务五】水压站点的特征工程
df1和df2中分别给出了18年和19年各个站点的数据,其中列中的H0至H23分别代表当天0点至23点;df3中记录了18-19年的每日该地区的天气情况,请完成如下的任务:
import pandas as pd import numpy as np df1 = pd.read_csv('yali18.csv') df2 = pd.read_csv('yali19.csv') df3 = pd.read_csv('qx1819.csv')
- 通过df1和df2构造df,把时间设为索引,第一列为站点编号,第二列为对应时刻的压力大小,排列方式如下(压力数值请用正确的值替换):
站点 压力 2018-01-01 00:00:00 1 1.0 2018-01-01 00:00:00 2 1.0 ... ... ... 2018-01-01 00:00:00 30 1.0 2018-01-01 01:00:00 1 1.0 2018-01-01 01:00:00 2 1.0 ... ... ... 2019-12-31 23:00:00 30 1.0
在上一问构造的
df
基础上,构造下面的特征序列或DataFrame
,并把它们逐个拼接到df
的右侧
- 当天最高温、最低温和它们的温差
- 当天是否有沙暴、是否有雾、是否有雨、是否有雪、是否为晴天
- 选择一种合适的方法度量雨量/下雪量的大小(构造两个序列分别表示二者大小)
- 限制只用4列,对风向进行
0-1
编码(只考虑风向,不考虑大小)
遇到了一点问题,为什么这里没数据了
这里也有问题,我哭了。。。
对
df
的水压一列构造如下时序特征:
- 当前时刻该站点水压与本月的相同整点时间该站点水压均值的差,例如当前时刻为
2018-05-20 17:00:00
,那么对应需要减去的值为当前月所有17:00:00
时间点水压值的均值- 当前时刻所在周的周末该站点水压均值与工作日水压均值之差
- 当前时刻向前7日内,该站点水压的均值、标准差、
0.95
分位数、下雨天数与下雪天数的总和- 当前时刻向前7日内,该站点同一整点时间水压的均值、标准差、
0.95
分位数- 当前时刻所在日的该站点水压最高值与最低值出现时刻的时间差
【数据下载】链接:点击这里 提取码:ijbd
总结:
Pandas打卡学习完结撒花,但是pandas的学习并没有完结,这会是一个很好的开始,加油!