数据压缩补充知识——量化器(Lloyd-Max条件推导)

本文探讨了Lloyd-Max标量量化器如何根据信号的概率分布进行优化,以及它与均匀量化在非均匀信号处理上的差异。重点介绍了如何选择门限和重建电平,以及为何均匀量化适合熵编码。通过实例揭示了在压缩系统中,如何平衡量化效果和编码效率的策略。
摘要由CSDN通过智能技术生成

目录

        一、基础知识

        二、条件推导

        三、重要结论


一、基础知识

Lloyd-Max标量量化器(非均匀量化器):也成为称为pdf-最佳量化器 

简单说明一下量化需要考虑的要点:

 Lloyd-Max量化器:在信源符号概率分布函数fx值大的时候,减小量化区间;在fx小的时候,增大量化区间(出现次数多,细量化,出现次数少,粗量化)

这里引出了两个重要的结论:

⚪ 判断门限应该取在相邻量化输出电平的重点

⚪重建电平应该取在量化间隔的质心

下面来推导这两个重要结论:

二、条件推导

公式太不方便打啦,直接手写也方便理解~

三、重要结论

1、对于均匀分布的信号,采用均匀量化器能得到最好的量化效果

2、对于非均匀分布的信号,采用Llyod-Max量化器能得到最好的结果(当输入信号也为均匀分布时,Llyod-Max量化器的结果和均匀量化器的结果相同)

        虽然我们已经知道了,对于非均匀分布的信号,采用Llyod-Max量化器能取得最好的结果(类似于,密的地方,细量化;疏的地方,粗量化,最终得到的量化结果肯定比采用均匀量化的好)

        但是在压缩系统中,还有一个非常重要的问题需要我们考虑——我们要将量化后的结果输入熵编码,最终得到编码后的码流。而熵编码(以典型的Huffman编码为例),最希望输入的其实是一个概率分布很不均的信号,Huffman编码可以对概率大的符号采用短码,对概率小的符号采用长码,从而降低平均码长,提高压缩效率。

再次回顾一下非均匀量化的图像:

1、2、3、4,量化后,这四个区间的符号出现概率(可以看每个颜色块的面积)其实是非常相近的,也就是非常类似于均匀分布。

而均匀量化器量化后,

 3、4、5、6、7、8,这几块量化后符号的出现概率明显是非常不同的,也就是非均匀分布的。

总结一下上面得到的结论: 

        非均匀量化——输出的概率分布均匀分布——不适合熵编码

        均匀量化——输出的概率分布非均匀分布——适合熵编码

        当然我们直接使用均匀量化即可!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值