目录
一、基础知识
Lloyd-Max标量量化器(非均匀量化器):也成为称为pdf-最佳量化器
简单说明一下量化需要考虑的要点:
Lloyd-Max量化器:在信源符号概率分布函数fx值大的时候,减小量化区间;在fx小的时候,增大量化区间(出现次数多,细量化,出现次数少,粗量化)
这里引出了两个重要的结论:
⚪ 判断门限应该取在相邻量化输出电平的重点
⚪重建电平应该取在量化间隔的质心
下面来推导这两个重要结论:
二、条件推导
公式太不方便打啦,直接手写也方便理解~
三、重要结论
1、对于均匀分布的信号,采用均匀量化器能得到最好的量化效果
2、对于非均匀分布的信号,采用Llyod-Max量化器能得到最好的结果(当输入信号也为均匀分布时,Llyod-Max量化器的结果和均匀量化器的结果相同)
虽然我们已经知道了,对于非均匀分布的信号,采用Llyod-Max量化器能取得最好的结果(类似于,密的地方,细量化;疏的地方,粗量化,最终得到的量化结果肯定比采用均匀量化的好)
但是在压缩系统中,还有一个非常重要的问题需要我们考虑——我们要将量化后的结果输入熵编码,最终得到编码后的码流。而熵编码(以典型的Huffman编码为例),最希望输入的其实是一个概率分布很不均的信号,Huffman编码可以对概率大的符号采用短码,对概率小的符号采用长码,从而降低平均码长,提高压缩效率。
再次回顾一下非均匀量化的图像:
1、2、3、4,量化后,这四个区间的符号出现概率(可以看每个颜色块的面积)其实是非常相近的,也就是非常类似于均匀分布。
而均匀量化器量化后,
3、4、5、6、7、8,这几块量化后符号的出现概率明显是非常不同的,也就是非均匀分布的。
总结一下上面得到的结论:
非均匀量化——输出的概率分布均匀分布——不适合熵编码
均匀量化——输出的概率分布非均匀分布——适合熵编码
当然我们直接使用均匀量化即可!