adorkable_的博客

蒟蒻的博客。。。

10.3 T3

题目大意:

给定一棵n个点n-1条边的树,每个点上有一个重量w[i]和价值c[i],有K个背包,容量分别为1~K。有Q个询问,每组询问给定两个点x,y,,可以取x到y的最短路径上的点的物品(每种无限个),求各个背包的最大价值的和异或和

数据范围:

n,Q<=40000
K<62
1<=w[i]<=K
1<=c[i]<=1000000

solution:

暴力肯定是不行的,很容易想到倍增。在树上进行倍增(像倍增LCA一样(划掉)),算背包DP,(好有道理(划掉))。让我们算一下时间复杂度,O(K²n lg n+KQ lg n),显然会超时,背包合并太慢了,要O(K²)!!!再想想有没有别的idea。
K很小,但是平方一下也不好玩,得去掉这个平方。由于是完全背包,所以有一个很显然的贪心想法,对于用一个重量,只有价值最大的物品是有用的(这不是废话)。所以,只要维护出树链上的各种重量的物品的最大价值。树链剖分和Link-Cut-Tree都可以完美的解决,可是……两个lg过不了……lct的常数……不说话(我就写了lct……access写错了)反正过不了,不管了!我们来看一下正解,话说不需要带修改操作,倍增就可以实现了(写什么lct……),和lca的写法完全一样,顺带更新一下要维护的数据,然后把K个物品处理一下,完全背包。时间复杂度O(Qn lg n+QK²)。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int oo=1e9+7;
int num,k,deep[40005],vet[80005],next[80005],head[40005],f[40005][20],t[40005],s[40005],dp[40005][20][62],ans[105],maxx[105];
long long read()
{
    char last='+',ch=getchar();
    while (ch<'0' || ch>'9') last=ch,ch=getchar();
    long long ans=0;
    while (ch<='9' && ch>='0')
    {
        ans=ans*10+(ch-48);
        ch=getchar();
    }
    if (last=='-') ans=-ans;
    return ans;
}
void add(int u,int v)
{
    num++;
    vet[num]=v;
    next[num]=head[u];
    head[u]=num;
}
void dfs(int u,int fa)
{
    f[u][0]=fa;
    dp[u][0][t[u]]=max(dp[u][0][t[u]],s[u]);
    dp[u][0][t[fa]]=max(dp[u][0][t[fa]],s[fa]);
    for (int i=1; i<=16; i++)
    {
        f[u][i]=f[f[u][i-1]][i-1];
        for (int j=1; j<=k; j++)
            dp[u][i][j]=max(dp[u][i-1][j],dp[f[u][i-1]][i-1][j]);
    }
    for (int i=head[u]; i; i=next[i])
    {
        int v=vet[i];
        if (v==fa) continue;
        deep[v]=deep[u]+1;
        dfs(v,u);
    }
}
void lca(int x,int y)
{
    if (deep[x]<deep[y]) swap(x,y);
    for (int i=16; i>=0; i--)
        if (deep[f[x][i]]>=deep[y])
        {
            for (int j=1; j<=k; j++) maxx[j]=max(maxx[j],dp[x][i][j]);
            x=f[x][i];
        }
    if (x==y) return;
    for (int i=16; i>=0; i--)
        if (f[x][i]!=f[y][i])
        {
            for (int j=1; j<=k; j++) maxx[j]=max(maxx[j],dp[x][i][j]);
            for (int j=1; j<=k; j++) maxx[j]=max(maxx[j],dp[y][i][j]);
            x=f[x][i],y=f[y][i];
        }
    for (int j=1; j<=k; j++) maxx[j]=max(maxx[j],dp[x][0][j]);
    for (int j=1; j<=k; j++) maxx[j]=max(maxx[j],dp[y][0][j]);
}
int main()
{
    freopen("appletree.in","r",stdin);
    freopen("appletree.out","w",stdout);
    int n=read();
    k=read();
    for (int i=1; i<n; i++)
    {
        int u=read(),v=read();
        add(u,v);
        add(v,u);
    }
    for (int i=1; i<=n; i++) t[i]=read();
    for (int i=1; i<=n; i++) s[i]=read();
    dfs(1,0);
    int q=read();
    while (q--)
    {
        int a=read(),b=read();
        for (int i=1; i<=k; i++) maxx[i]=ans[i]=0;
        long long ans1=0,ans2=0;
        maxx[t[a]]=s[a];
        maxx[t[b]]=s[b];
        lca(a,b);
        for (int i=1; i<=k; i++)
            for (int j=i; j<=k; j++) ans[j]=max(ans[j],ans[j-i]+maxx[i]);
        for (int i=1; i<=k; i++) ans1=ans1+ans[i];
        for (int i=1; i<=k; i++) ans2=ans2^ans[i];
        printf("%lld %lld\n",ans1,ans2);
    }
    return 0;
}
阅读更多
文章标签: 编程
个人分类: dp 倍增lca
想对作者说点什么? 我来说一句

畅捷通T3V10.9破解补丁

2016年03月28日 1.04MB 下载

t3 10.3 破解

2015年10月10日 1.04MB 下载

用友通、T3数据字典

2014年11月04日 14.59MB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭