计科算法分析与设计第十一次实验

题目描述

已知一个载重为M的背包和n件物品,物品编号从0到n-1。第i件物品的重量为 wi,若将第i种物品装入背包将获益pi,这里,wi>0,pi>0,0<=i<n。所谓0/1背包问题是指在物品不能分割,只能整件装入背包或不装入的情况下,求一种最佳装载方案使得总收益最大。

注:

1、本题请用回溯法解决(要使用限界函数进行剪枝)。

2、所有测试数据均已按pi/wi降序排列。

 

输入

第 1 行中有 2 个正整数 n(n<=50)和M ,表示有 n件物品,背包载重为M(m<=100)。然后输入n个物品的重量,最后输入n个物品的收益值。

 

输出

最佳装载方案的总收益

 

样例输入

8 110
1 11 21 23 33 43 45 55
11 21 31 33 43 53 55 65

样例输出

159

 

#include "iostream"
using namespace std;
 
int *p=new int[50];
int *w=new int[50];
int M,n;
 
int Bound(int k,int cp,int cw){
    int b=cp,c=cw,i;
    for(i=k+1;i<n;i++){
        c+=w[i];
        if(c<M)
            b+=p[i];
        else
            return (b+(1-(c-M)/w[i])*p[i]);
    }
    return b;
}
 
void BKnapsack(int k,int cp,int cw,int &fp,int x[],int y[]){
    int j;
//  int bp;
    if(cw+w[k]<=M){
        y[k]=1;
        if(k<n-1)
            BKnapsack(k+1,cp+p[k],cw+w[k],fp,x,y);
        if(cp+p[k]>fp&&k==n-1){
            fp=cp+p[k];
            for(j=0;j<=k;j++)
                x[j]=y[j];
        }
    }
    if(Bound(k,cp,cw)>=fp){
        y[k]=0;
        if(k<n-1)
            BKnapsack(k+1,cp,cw,fp,x,y);
        if(cp>fp&&k==n-1){
            fp=cp;
            for(j=0;j<=k;j++)
                x[j]=y[j];
        }
    }
}
 
int main(){
    int i,Sum=0;
    int fp;
    cin>>n>>M;
    int *x=new int[n];
    int *y=new int[n];
    for(i=0;i<n;i++)
        cin>>w[i];
    for(i=0;i<n;i++)
        cin>>p[i];
    BKnapsack(0,0,0,fp,x,y);
    cout<<fp<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值