题目描述
已知一个载重为M的背包和n件物品,物品编号从0到n-1。第i件物品的重量为 wi,若将第i种物品装入背包将获益pi,这里,wi>0,pi>0,0<=i<n。所谓0/1背包问题是指在物品不能分割,只能整件装入背包或不装入的情况下,求一种最佳装载方案使得总收益最大。
注:
1、本题请用回溯法解决(要使用限界函数进行剪枝)。
2、所有测试数据均已按pi/wi降序排列。
输入
第 1 行中有 2 个正整数 n(n<=50)和M ,表示有 n件物品,背包载重为M(m<=100)。然后输入n个物品的重量,最后输入n个物品的收益值。
输出
最佳装载方案的总收益
样例输入
8 110 1 11 21 23 33 43 45 55 11 21 31 33 43 53 55 65
样例输出
159
#include "iostream"
using namespace std;
int *p=new int[50];
int *w=new int[50];
int M,n;
int Bound(int k,int cp,int cw){
int b=cp,c=cw,i;
for(i=k+1;i<n;i++){
c+=w[i];
if(c<M)
b+=p[i];
else
return (b+(1-(c-M)/w[i])*p[i]);
}
return b;
}
void BKnapsack(int k,int cp,int cw,int &fp,int x[],int y[]){
int j;
// int bp;
if(cw+w[k]<=M){
y[k]=1;
if(k<n-1)
BKnapsack(k+1,cp+p[k],cw+w[k],fp,x,y);
if(cp+p[k]>fp&&k==n-1){
fp=cp+p[k];
for(j=0;j<=k;j++)
x[j]=y[j];
}
}
if(Bound(k,cp,cw)>=fp){
y[k]=0;
if(k<n-1)
BKnapsack(k+1,cp,cw,fp,x,y);
if(cp>fp&&k==n-1){
fp=cp;
for(j=0;j<=k;j++)
x[j]=y[j];
}
}
}
int main(){
int i,Sum=0;
int fp;
cin>>n>>M;
int *x=new int[n];
int *y=new int[n];
for(i=0;i<n;i++)
cin>>w[i];
for(i=0;i<n;i++)
cin>>p[i];
BKnapsack(0,0,0,fp,x,y);
cout<<fp<<endl;
return 0;
}