多段图问题
多段图G=(V,E)是一个带权有向图,它具有如下特性:图中的结点被划分成k>=2个互不相交的子集Vi,1<=i<=k。其中V1和Vk分别只有一个结点,V1包含源点(source)s,Vk包含汇点(sink)t。对所有边属于E,多段图要求若u属于Vi,则v属于Vi+1,1<=i< k,每条边的权值为c(u,v)。从s到t的路径长度是这条路径上边的权值之和,多段图问题(multistage graph problem)是求从s到t的一条长度最短的路径。
输入
第一行输入结点个数n和边的个数m,以下m行输入各有向边的两个结点u、v及该边上的代价。
输出
从s到t的最短的路径的长度。
样例输入
4 4 0 1 5 0 2 1 1 3 3 2 3 10
样例输出
8
#include <iostream>
#include <limits.h>
using namespace std;
struct Enode{
int adjvex;
int w;
Enode *next;
};
int FMultiGraph(int n,Enode **a){
int c;
int j;
Enode *r;
int *cost=new int[n];
cost[n-1]=0;
for(j=n-2;j>=0;j--){
int min=INT_MAX;