解锁Remembrall的潜力:为您的AI模型增加长期记忆和增强生成功能

解锁Remembrall的潜力:为您的AI模型增加长期记忆和增强生成功能

引言

在构建基于AI的应用时,长期记忆和增强生成(RAG, Retrieval Augmented Generation)是提高模型表现的关键能力。Remembrall是一个能够为您的语言模型提供这些功能的工具,并且仅需几行代码即可实现。在这篇文章中,我们将深入探讨如何在LangChain中使用Remembrall,以便为您的OpenAI模型增加长期记忆和增强生成功能。

主要内容

什么是Remembrall?

Remembrall充当您的OpenAI调用的轻量级代理,通过在运行时增强聊天调用的上下文,将收集到的相关事实整合进去。这样,您的模型不仅可以记住用户过去的交互,还可以通过增加的上下文提供更精准和相关的响应。

设置

首先,您需要在Remembrall平台上使用GitHub登录并从设置页面复制您的API密钥。所有使用openai_api_base和Remembrall API密钥的请求将会自动在Remembrall仪表板中被跟踪,且不需要分享您的OpenAI密钥。

在安装依赖后,即可开始配置环境:

pip install -U langchain-openai

启用长期记忆

为了保持模型的记忆,您需要在调用中设置openai_api_base和Remembrall API密钥,并指定一个UID(通常是用户的唯一标识符,如邮箱地址):

from langchain_openai import ChatOpenAI

# 使用API代理服务提高访问稳定性
chat_model = ChatOpenAI(openai_api_base="https://remembrall.dev/api/openai/v1",
                        model_kwargs={
                            "headers":{
                                "x-gp-api-key": "remembrall-api-key-here",
                                "x-gp-remember": "user@email.com",
                            }
                        })

chat_model.predict("My favorite color is blue.")
import time; time.sleep(5)  # 等待系统自动保存事实
print(chat_model.predict("What is my favorite color?"))

启用检索增强生成(RAG)

在Remembrall仪表板中创建文档上下文,上传待处理的PDF文档或直接粘贴文本,并保存文档上下文ID。然后,在调用中设置:

from langchain_openai import ChatOpenAI

# 使用API代理服务提高访问稳定性
chat_model = ChatOpenAI(openai_api_base="https://remembrall.dev/api/openai/v1",
                        model_kwargs={
                            "headers":{
                                "x-gp-api-key": "remembrall-api-key-here",
                                "x-gp-context": "document-context-id-goes-here",
                            }
                        })

print(chat_model.predict("This is a question that can be answered with my document."))

常见问题和解决方案

  1. API访问问题: 在某些地区,访问国际API可能受到限制。使用API代理服务可以提高访问稳定性。

  2. 记忆保存延迟: 尽量让模型有充足的时间进行自动保存,以确保长期记忆的准确性。

  3. 配置错误: 确保您在设置时准确无误地输入了API密钥和文档上下文ID。

总结和进一步学习资源

通过Remembrall,您可以轻松地为AI模型添加长期记忆和增强生成功能,这不仅提升了用户体验,也为更复杂的任务提供了可能性。有关更多信息和技术细节,请访问以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值