优化你的聊天机器人:无需用户反馈的智能评价策略
聊天机器人是大多数公司和开发者部署大语言模型(LLM)应用程序最常见的接口之一。然而,评估聊天机器人的质量并不是一个简单的任务,因为用户往往不愿意提供明确的反馈。本文将介绍一种基于用户追问的隐式反馈机制,帮助提升聊天机器人的性能。
引言
在多轮对话中,用户的后续提问可以有效地反映机器人先前响应的质量。然而,大多数场合,用户并不提供明确的反馈(如点赞或点踩)。为了解决这一问题,我们提出了一种基于用户追问的隐式评价机制,利用LangChain和LangSmith等工具来自动评估和优化聊天机器人的响应质量。
主要内容
LangChain和LangSmith简介
- LangChain:一个用于构建LLM应用程序的工具集,支持各种语言模型的开发和集成。
- LangSmith:用于捕获用户和模型辅助反馈的工具,大大提升LLM应用程序的调试和评估能力。
反馈稀缺性问题
大部分用户不愿意提供显式反馈,但多轮对话中的用户追问可以成为推断机器人回应质量的重要线索。以Chat Langchain为例,尽管只有0.04%的查询收到显式反馈,约70%的查询属于前序问题的追问。通过分析这些追问,我们可以推断先前AI响应的有效性。
自定义评估器的实现
我们可以通过自定义RunEvaluator
来进行隐式反馈分析,具体实现如下:
my_chain.with_config(
callbacks=[
EvaluatorCallbackHandler(
evaluators=[
ResponseEffectivenessEvaluator(evaluate_response_effectiveness)
]
)
],
)
此评估器会使用gpt-3.5-turbo
模型,根据用户的后续响应评估之前机器人的消息。它生成一个评分及其理由,并在LangSmith中转换为反馈。
代码示例
以下代码展示如何调用聊天机器人,并进行两轮对话评估。
from functools