知识点见示例代码
- 字典的简单介绍
- 标签编码
- 连续特征的处理:归一化和标准化
对心脏病数据集的特征用上述知识完成,一次性用所有的处理方式完成预处理,尝试手动完成,多敲几遍代码。
#认识字典
dict = {'name': 'zixuan', 'age':23,'college':'UCL'}
dict
dict['name']
#数据预处理
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
dt = pd.read_csv(r'data.csv')
dt.head()
dt.info()
dt.isnull().sum()
#缺失值处理
discrete_features = []
continuous_features = []
for feature in dt.columns:
if dt[feature].dtype == 'object':
discrete_features.append(feature)
else:
continuous_features.append(feature)
print(f'离散特征:{discrete_features}')
print(f'连续特征:{continuous_features}')
for features in discrete_features:
mode_value = dt[features].mode()[0]
dt[features].fillna(mode_value,inplace=True)
print(f"列 '{features}' 使用众数 {mode_value} 填补空值")
for features in continuous_features:
median_value = dt[features].median()
dt[features].fillna(median_value,inplace=True)
print(f"列 '{features}' 使用中位数 {median_value} 填补空值")
#离散特征做标签编码/独热编码
dt["Home Ownership"].value_counts()
dt['Years in current job'].value_counts()
dt['Purpose'].value_counts()
dt['Term'].value_counts()
mapping = {
'Home Ownership': {
'Own Home': 0,
'Rent': 1,
'Have Mortgage': 2,
'Home Mortgage': 3
},
'Term': {
'Short Term': 0,
'Long Term': 1
},
'Purpose': {
'debt_consolidation': 2,
'buy house': 1,
'business loan': 1,
'major purchase': 1,
'small business': 1,
'other': 0,
'home improvements': 0,
'buy a car': 0,
'medical bills': 0,
'take a trip': 0,
'wedding': 0,
'moving': 0,
'educational expenses': 0,
'vacation': 0,
'renewable energy': 0
},
'Years in current job': {
'10+ years': 0,
'9 years': 1,
'8 years': 1,
'7 years': 2,
'6 years': 2,
'5 years': 3,
'4 years': 3,
'3 years': 4,
'2 years': 4,
'< 1 year': 5
}
}
dt["Home Ownership"] = dt["Home Ownership"].map(mapping["Home Ownership"])
dt["Term"] = dt["Term"].map(mapping["Term"])
dt["Purpose"] = dt["Purpose"].map(mapping["Purpose"])
dt["Years in current job"] = dt["Years in current job"].map(mapping["Years in current job"])
dt.head()
#连续特征做归一化/标准化
print(f'连续特征:{continuous_features}')
def manual_normalize(dt):
min_val = dt.min()
max_val = dt.max()
normalized_data = (dt - min_val) / (max_val - min_val)
return normalized_data
dt['Annual Income'] = manual_normalize(dt['Annual Income'])
dt['Tax Liens'] = manual_normalize(dt['Tax Liens'])
dt['Number of Open Accounts'] = manual_normalize(dt['Number of Open Accounts'])
dt['Years of Credit History'] = manual_normalize(dt['Years of Credit History'])
dt['Maximum Open Credit'] = manual_normalize(dt['Maximum Open Credit'])
dt['Number of Credit Problems'] = manual_normalize(dt['Number of Credit Problems'])
dt['Months since last delinquent'] = manual_normalize(dt['Months since last delinquent'])
dt['Bankruptcies'] = manual_normalize(dt['Bankruptcies'])
dt['Current Loan Amount'] = manual_normalize(dt['Current Loan Amount'])
dt['Current Credit Balance'] = manual_normalize(dt['Current Credit Balance'])
dt['Monthly Debt'] = manual_normalize(dt['Monthly Debt'])
dt['Credit Score'] = manual_normalize(dt['Credit Score'])
dt.head(10)