# 掌握AI缓存:如何为大语言模型调用结果缓存?
## 引言
在使用大型语言模型(LLM)时,响应时间可能会成为一个挑战。通过缓存LLM调用结果,开发者可以显著提高响应速度,减少请求延迟。这篇文章将探讨几种实现LLM结果缓存的方法,并提供实用的代码示例。
## 主要内容
### 1. 内存缓存(In-Memory Cache)
内存缓存存储在应用程序运行时的内存中,速度非常快,适用于短期缓存。
```python
from langchain_community.cache import InMemoryCache
from langchain.globals import set_llm_cache
set_llm_cache(InMemoryCache())
2. SQLite缓存
SQLite缓存将数据持久化到磁盘,使得应用程序重启后仍能访问缓存。
from langchain_community.cache import SQLiteCache
set_llm_cache(SQLiteCache(database_path=".langchain.db"))
3. Redis缓存
Redis是一种高性能、可扩展的内存存储解决方案,适合需要持久化和分布式缓存的应用程序。
from langchain_community.cache import RedisCache
from redis import Redis
set_llm_cache(RedisCache(redis_=Redis()))
4. Upstash Redis缓存
使用Upstash服务,可以通过HTTP API实现无服务器的Redis缓存方案,适合需要快速配置和低管理开销的场景。
from langchain_community.cache import UpstashRedisCache
from upstash_redis import Redis
set_llm_cache(UpstashRedisCache(redis_=Redis(url="{UPSTASH_REDIS_REST_URL}", token="{UPSTASH_REDIS_REST_TOKEN}")))
代码示例
以下示例展示了如何使用SQLite缓存来存储AI调用的结果:
from langchain_globs import set_llm_cache
from langchain_community.cache import SQLiteCache
from langchain_openai import OpenAI
# 使用API代理服务提高访问稳定性
llm = OpenAI(model="gpt-3.5-turbo-instruct", n=2, best_of=2)
set_llm_cache(SQLiteCache(database_path=".langchain.db"))
# 第一次调用会比较慢,因为缓存里还没有结果
result = llm.invoke("Tell me a joke")
print(result)
# 第二次调用同样的请求,会从缓存中快速返回结果
result_cached = llm.invoke("Tell me a joke")
print(result_cached)
常见问题和解决方案
问题1:为什么初次调用仍然较慢?
- 原因:初次调用时,为了生成结果,仍需要完整的API调用,而不是从缓存中直接获取。
- 解决方案:优化模型参数,减少计算量。
问题2:缓存不命中怎么办?
- 原因:缓存的key可能不够精确,或者缓存的策略设置不当。
- 解决方案:调整缓存策略,确保key的唯一性和准确性。
总结与进一步学习资源
缓存策略的选择应基于应用需求,如响应速度、数据一致性以及存储成本等。不同的缓存方案适合不同的场景,开发者应根据需求灵活选择。
进一步学习资源:
参考资料
- Langchain Documentation
- Redis Official Documentation
- SQLite Official Documentation
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---