2、面试官心里分析
其实一般问问题,都是这么问的,先问问你zk,然后其实是要过度的zk关联的一些问题里去,比如分布式锁。因为在分布式系统开发中,分布式锁的使用场景还是很常见的。
3、面试题剖析
(1)redis分布式锁
官方叫做RedLock算法,是redis官方支持的分布式锁算法。
这个分布式锁有3个重要的考量点,互斥(只能有一个客户端获取锁),不能死锁,容错(大部分redis节点或者这个锁就可以加可以释放)
第一个最普通的实现方式,如果就是在redis里创建一个key算加锁
SET my:lock 随机值 NX PX 30000,这个命令就ok,这个的NX的意思就是只有key不存在的时候才会设置成功,PX 30000的意思是30秒后锁自动释放。别人创建的时候如果发现已经有了就不能加锁了。
释放锁就是删除key,但是一般可以用lua脚本删除,判断value一样才删除:
关于redis如何执行lua脚本,自行百度
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
为啥要用随机值呢?因为如果某个客户端获取到了锁,但是阻塞了很长时间才执行完,此时可能已经自动释放锁了,此时可能别的客户端已经获取到了这个锁,要是你这个时候直接删除key的话会有问题,所以得用随机值加上面的lua脚本来释放锁。
但是这样是肯定不行的。因为如果是普通的redis单实例,那就是单点故障。或者是redis普通主从,那redis主从异步复制,如果主节点挂了,key还没同步到从节点,此时从节点切换为主节点,别人就会拿到锁。
第二个问题,RedLock算法
这个场景是假设有一个redis cluster,有5个redis master实例。然后执行如下步骤获取一把锁:
1)获取当前时间戳,单位是毫秒
2)跟上面类似,轮流尝试在每个master节点上创建锁,过期时间较短,一般就几十毫秒
3)尝试在大多数节点上建立一个锁,比如5个节点就要求是3个节点(n / 2 +1)
4)客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了
5)要是锁建立失败了,那么就依次删除这个锁
6)只要别人建立了一把分布式锁,你就得不断轮询去尝试获取锁
(2)zk分布式锁
zk分布式锁,其实可以做的比较简单,就是某个节点尝试创建临时znode,此时创建成功了就获取了这个锁;这个时候别的客户端来创建锁会失败,只能注册个监听器监听这个锁。释放锁就是删除这个znode,一旦释放掉就会通知客户端,然后有一个等待着的客户端就可以再次重新枷锁。
/**
* ZooKeeperSession
* @author Administrator
*
*/
public class ZooKeeperSession {
private static CountDownLatch connectedSemaphore = new CountDownLatch(1);
private ZooKeeper zookeeper;
private CountDownLatch latch;
public ZooKeeperSession() {
try {
this.zookeeper = new ZooKeeper(
"192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181",
50000,
new ZooKeeperWatcher());
try {
connectedSemaphore.await();
} catch(InterruptedException e) {
e.printStackTrace();
}
System.out.println("ZooKeeper session established......");
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 获取分布式锁
* @param productId
*/
public Boolean acquireDistributedLock(Long productId) {
String path = "/product-lock-" + productId;
try {
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
return true;
} catch (Exception e) {
while(true) {
try {
Stat stat = zk.exists(path, true); // 相当于是给node注册一个监听器,去看看这个监听器是否存在
if(stat != null) {
this.latch = new CountDownLatch(1);
this.latch.await(waitTime, TimeUnit.MILLISECONDS);
this.latch = null;
}
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
return true;
} catch(Exception e) {
continue;
}
}
// 很不优雅,我呢就是给大家来演示这么一个思路
// 比较通用的,我们公司里我们自己封装的基于zookeeper的分布式锁,我们基于zookeeper的临时顺序节点去实现的,比较优雅的
}
return true;
}
/**
* 释放掉一个分布式锁
* @param productId
*/
public void releaseDistributedLock(Long productId) {
String path = "/product-lock-" + productId;
try {
zookeeper.delete(path, -1);
System.out.println("release the lock for product[id=" + productId + "]......");
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 建立zk session的watcher
* @author Administrator
*
*/
private class ZooKeeperWatcher implements Watcher {
public void process(WatchedEvent event) {
System.out.println("Receive watched event: " + event.getState());
if(KeeperState.SyncConnected == event.getState()) {
connectedSemaphore.countDown();
}
if(this.latch != null) {
this.latch.countDown();
}
}
}
/**
* 封装单例的静态内部类
* @author Administrator
*
*/
private static class Singleton {
private static ZooKeeperSession instance;
static {
instance = new ZooKeeperSession();
}
public static ZooKeeperSession getInstance() {
return instance;
}
}
/**
* 获取单例
* @return
*/
public static ZooKeeperSession getInstance() {
return Singleton.getInstance();
}
/**
* 初始化单例的便捷方法
*/
public static void init() {
getInstance();
}
}
(3)redis分布式锁和zk分布式锁的对比
redis分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能
zk分布式锁,获取不到锁,注册个监听器即可,不需要不断主动尝试获取锁,性能开销较小
另外一点就是,如果是redis获取锁的那个客户端bug了或者挂了,那么只能等待超时时间之后才能释放锁;而zk的话,因为创建的是临时znode,只要客户端挂了,znode就没了,此时就自动释放锁
redis分布式锁大家每发现好麻烦吗?遍历上锁,计算时间等等。。。zk的分布式锁语义清晰实现简单
所以先不分析太多的东西,就说这两点,我个人实践认为zk的分布式锁比redis的分布式锁牢靠、而且模型简单易用