使用Fleet AI Context和LangChain构建高效的文档检索系统
引言
在当今的AI和机器学习领域,高质量的文档检索系统对于提高开发效率和用户体验至关重要。本文将介绍如何利用Fleet AI Context提供的高质量embeddings和LangChain框架来构建一个强大的文档检索系统。我们将深入探讨如何处理嵌入向量、检索相关文档,以及如何将这些功能整合到一个简单但功能强大的代码生成链中。
主要内容
1. 环境准备
首先,我们需要安装必要的依赖包:
pip install --upgrade --quiet langchain fleet-context langchain-openai pandas faiss-cpu
对于支持CUDA的GPU,可以将faiss-cpu
替换为faiss-gpu
以获得更好的性能。
2. 加载Fleet AI Context embeddings
Fleet AI Context提供了大量流行Python库的高质量embeddings。我们将使用LangChain的embeddings作为示例:
from context import download_embeddings
df = download_embeddings("langchain")
3. 构建检索器
我们将创建两种类型的检索器:一个基于向量存储的检索器和一个父文档检索器。
向量存储检索器
from langchain.retrievers import MultiVectorRetriever
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
def load_fleet_retriever(df, vectorstore_cls=FAISS, **kwargs):
vectorstore = _populate_vectorstore(df, vectorstore_cls)
return vectorstore.as_retriever(**kwargs)
def _populate_vectorstore(df, vectorstore_cls):
texts_embeddings = []
metadatas = []
for _, row in df.iterrows():
texts_embeddings.append((row.metadata["text"], row["dense_embeddings"]))
metadatas.append(