使用Fleet AI Context和LangChain构建高效的文档检索系统

使用Fleet AI Context和LangChain构建高效的文档检索系统

引言

在当今的AI和机器学习领域,高质量的文档检索系统对于提高开发效率和用户体验至关重要。本文将介绍如何利用Fleet AI Context提供的高质量embeddings和LangChain框架来构建一个强大的文档检索系统。我们将深入探讨如何处理嵌入向量、检索相关文档,以及如何将这些功能整合到一个简单但功能强大的代码生成链中。

主要内容

1. 环境准备

首先,我们需要安装必要的依赖包:

pip install --upgrade --quiet langchain fleet-context langchain-openai pandas faiss-cpu

对于支持CUDA的GPU,可以将faiss-cpu替换为faiss-gpu以获得更好的性能。

2. 加载Fleet AI Context embeddings

Fleet AI Context提供了大量流行Python库的高质量embeddings。我们将使用LangChain的embeddings作为示例:

from context import download_embeddings

df = download_embeddings("langchain")

3. 构建检索器

我们将创建两种类型的检索器:一个基于向量存储的检索器和一个父文档检索器。

向量存储检索器
from langchain.retrievers import MultiVectorRetriever
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

def load_fleet_retriever(df, vectorstore_cls=FAISS, **kwargs):
    vectorstore = _populate_vectorstore(df, vectorstore_cls)
    return vectorstore.as_retriever(**kwargs)

def _populate_vectorstore(df, vectorstore_cls):
    texts_embeddings = []
    metadatas = []
    for _, row in df.iterrows():
        texts_embeddings.append((row.metadata["text"], row["dense_embeddings"]))
        metadatas.append(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值