## 引言
在使用语言模型(如LLM)生成结构化数据时,确保输出格式符合预期是至关重要的。然而,模型往往会产生不符合规定格式的输出。本文将介绍一个强大的工具——`LM Format Enforcer`,它能帮助开发者确保语言模型生成的输出符合指定格式。我们将探讨其工作原理、具体使用方法以及潜在的挑战和解决方案。
## 主要内容
### LM Format Enforcer的工作原理
`LM Format Enforcer`结合了字符级解析器与分词器前缀树,只允许那些包含潜在有效格式序列的token输出。这种方法能有效减少生成不合规格式的风险。同时,它支持批量生成,使得处理多条输入变得更高效。
### 设置语言模型
首先,我们需要设置一个LLama2模型,并初始化所需的输出格式。请注意,访问Llama2模型需要获得许可。
```python
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
model_id = "meta-llama/Llama-2-7b-chat-hf"
device = "cuda"
if torch.cuda.is_available():
config = AutoConfig.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, config=config, torch_dtype=torch.float16, load_in_8bit=True, device_map="auto")
else:
raise Exception("GPU not available