使用Google Cloud Vertex AI和Matching Engine实现RAG系统

使用Google Cloud Vertex AI和Matching Engine实现RAG系统

在这篇文章中,我们将探索如何使用Google Cloud Platform的Vertex AI和Matching Engine来实现Retrieval-Augmented Generation(RAG)系统。我们将详细介绍环境设置、代码示例、常见问题及解决方案,并提供进一步学习的资源。

引言

RAG系统是一种结合信息检索和生成模型的技术,能够基于用户的提问检索相关文档或上下文,并生成精确的回答。本文旨在帮助您理解如何在Google Cloud Platform上使用Vertex AI的Matching Engine实现一个RAG系统。

主要内容

环境设置

在运行代码之前,需要创建一个索引。创建索引的过程可以参考这里。您需要设置以下的环境变量:

  • PROJECT_ID
  • ME_REGION
  • GCS_BUCKET
  • ME_INDEX_ID
  • ME_ENDPOINT_ID

安装LangChain CLI

为了使用这个包,首先需要安装LangChain CLI:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值