使用LangChain AgentExecutor构建多功能代理:实现与工具的智能交互
引言
在现代AI系统中,代理(Agent)的使用越来越普遍。这些代理通过语言模型(LLM)作为推理引擎,帮助决定并执行必要的操作。本教程将指导您使用LangChain的AgentExecutor创建一个能与多个工具交互的智能代理。
主要内容
语言模型与工具调用
语言模型(LLM)本身只能输出文本,通过创建能够调用工具的代理,可以实现更复杂的功能。本文将展示如何使用一个搜索引擎工具和一个本地数据库工具。
创建Retriever
为了让代理访问特定信息,您需要创建一个Retriever。通过LangChain中的函数,我们可以轻松地将数据加载到VectorStore中,并提供检索功能。
使用搜索工具
我们集成了Tavily搜索引擎作为工具。需要注意的是,某些地区可能需要使用API代理服务来提高访问稳定性。
聊天历史
代理能够“记住”过去的对话是一个关键功能。通过使用Memory模块,可以在后续交互中参考过去的信息。
调试与追踪
随着应用复杂性的增加,调试变得尤为重要。LangSmith提供了强大的追踪功能,帮助您实时监控和调试应用。
代码示例
以下是一个代码示例,展示了如何使用LangChain创建一个可以调用工具的代理:
import os
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WebBaseLoader
from langchai