使用LangChain AgentExecutor构建多功能代理:实现与工具的智能交互

使用LangChain AgentExecutor构建多功能代理:实现与工具的智能交互

引言

在现代AI系统中,代理(Agent)的使用越来越普遍。这些代理通过语言模型(LLM)作为推理引擎,帮助决定并执行必要的操作。本教程将指导您使用LangChain的AgentExecutor创建一个能与多个工具交互的智能代理。

主要内容

语言模型与工具调用

语言模型(LLM)本身只能输出文本,通过创建能够调用工具的代理,可以实现更复杂的功能。本文将展示如何使用一个搜索引擎工具和一个本地数据库工具。

创建Retriever

为了让代理访问特定信息,您需要创建一个Retriever。通过LangChain中的函数,我们可以轻松地将数据加载到VectorStore中,并提供检索功能。

使用搜索工具

我们集成了Tavily搜索引擎作为工具。需要注意的是,某些地区可能需要使用API代理服务来提高访问稳定性。

聊天历史

代理能够“记住”过去的对话是一个关键功能。通过使用Memory模块,可以在后续交互中参考过去的信息。

调试与追踪

随着应用复杂性的增加,调试变得尤为重要。LangSmith提供了强大的追踪功能,帮助您实时监控和调试应用。

代码示例

以下是一个代码示例,展示了如何使用LangChain创建一个可以调用工具的代理:

import os
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WebBaseLoader
from langchai
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值