## 引言
在现代信息处理的时代,知识图谱成为数据组织和知识管理的强大工具。通过从无结构文本中提取信息构建知识图谱,我们可以实现对复杂关系的深入理解和高效的知识导航。本文旨在提供一个完整的指南,帮助您从无结构文本构建知识图谱,并介绍其在RAG(Retrieval-Augmented Generation)应用中的使用。
## 主要内容
### 1. 从文本中提取结构化信息
构建知识图谱的第一步是从无结构文本中提取结构化信息。这通常需要使用自然语言处理(NLP)模型来解析文本并识别实体及其关系。
### 2. 存储到图数据库
一旦信息被提取,就需要将其存储在图数据库中。这使得下游的RAG应用能够轻松访问和利用这些信息。在本指南中,我们将使用Neo4j图数据库。
### 3. 环境设置
我们首先需要安装必要的软件包并设置环境变量。在下述示例中,我们将使用Neo4j和Langchain库:
```python
# 安装必要的软件包
%pip install --upgrade --quiet langchain langchain-community langchain-openai langchain-experimental neo4j
# 设置OpenAI API的环境变量
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass() # 输入您的OpenAI API密钥
# 设置Neo4j数据库的连接信息
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "pa