top K 问题

  

  在海量数据中找出出现频率最高的前K个数,或者从海量数据中找出最大的前K个数,这类问题被称为top K问题,例如搜索引擎中,同济最热门的10个查询词,在歌曲库中统计下载量频率最高的前10个数据。

  针对这类问题,通常比较好的方案是分治+Trie树/hash+小顶堆,即将数据集按照hash方法分解成多个小数据集,然后使用Trie树或者hash统计每个小数据集中的query词频,之后用小顶堆求出每个数据集中出现频率最高的前K个数,最后在所有的top K中求出最终的top K。

  例如,1亿个浮点数,如何找出最大的10000个?

1.快速排序

  最容易想到的方法是将数据全部排序,然后在排序后的集合中进行查找,最快的排序算法的时间复杂度一般为O(nlogn),如快速排序。但是在32位的机器上,每个float类型占4个字节,1亿个浮点数就要占用400MB的存储空间,对于一些可用内存小于400M的计算机而言,很显然是不能一次将全部数据读入内存进行排序的。其实即使内存能够满足要求,该方法也并不高效,因为题目的目的是寻找出最大的10000个数即可,而排序却是将所有的元素都排序了,做了很多的无用功。

 

2.局部淘汰法

  该方法与排序方法类似,用一个容器保存前10000个数,然后将剩余的所有数字——与容器内的最小数字相比,如果所有后续的元素都比容器内的10000个数还小,那么容器内这个10000个数就是最大10000个数。如果某一后续元素比容器内最小数字大,则删掉容器内最小元素,并将该元素插入容器,最后遍历完这1亿个数,得到的结果容器中保存的数即为最终结果了。此时的时间复杂度为O(n+m*m),其中m为容器的大小,即10000。

 

3.分治法

  将1亿个数据分为100份,每一份包含100万个数据,找出每份数据中最大的10000个,最后在剩下的100*10000个数据中找出最大的10000个。如果100万数据选取的足够理想,那么可以过来掉99%的数据。

  100万个数据中找出最大的10000个,继续对大堆快速排序一次分成两堆,如果大堆个数N大于10000,继续对大堆快排一次分成两堆,如果大堆的个数N小于10000,就在小的那堆里快速排序一次,找到第10000-n大的数字,递归进行上述的过程,就可以找到第10000大的数字。这种方法每次需要的内存空间是100万*4 = 4M,一共需要101次比较。

 

4.hash法

  如果1亿个数里面有很多重复的数,先通过hash法,把这1亿个数字去重复,如果重复率高的话,会减少很大的内存用量,从而缩小运算空间,然后通过分治或者最小堆法进行。

 

5.最小堆

  先读入前10000个数来创建大小为10000的小顶堆,建堆的时间复杂度为O(mlogm)(m是数组的大小,即为10000),然后遍历后续的数字,并与堆顶(堆顶的数值最小)进行比较,如果比堆顶小,则继续读取后续的数字,如果比堆顶大,则替换堆顶元素并重新调整堆为最小堆。整个过程直至1亿的数全部变量完为止,然后按照中序遍历的方式输出当前堆中所有10000个数字,该算法的时间复杂度为O(nmlogm),空间复杂度是10000。

 

 

重复问题

  使用位图法对8位电话号码进行统计和排序。

package _9_3;

import java.util.Random;

public class Test
{
	int ARRNUM = 10000;
	int mmin = 10000000;
	int mmax = 99999999;
	int N = mmax - mmin + 1;
	int BITS_PER_WORD = 32;
	
	//找出放在第几个bit
	int WORD_OFFSET(int b)
	{
		return b/BITS_PER_WORD;
	}
	
	//计算出应该存在第几位
	int BIT_OFFSET(int b)
	{
		return b%BITS_PER_WORD;
	}
	
	//置为1
	void SetBit(int[] words, int n)
	{
		n -= mmin;
		words[WORD_OFFSET(n)] |= (1<<BIT_OFFSET(n));
	}
	
	//清零
	void ClearBit(int[] words, int n)
	{
		words[WORD_OFFSET(n)] &= ~(1<<BIT_OFFSET(n));
	}
	
	//获得对应的值
	boolean GetBit(int[] words, int n)
	{
		int bit = words[WORD_OFFSET(n)]&(1<<BIT_OFFSET(n));
		return bit != 0;
	}
	
	public void sort()
	{
		int i,j;
		int arr[] = new int[ARRNUM];
		System.out.println("数组大小:" + ARRNUM);
		//用来存放位图,每一位对应mmin到mmax范围内的一个数
		int[] words = new int[1 + N/BITS_PER_WORD];
		int count = 0;
		Random r = new Random();
		
		//生成100个随机数存放在数组arr中
		for(j = 0; j < ARRNUM; j++)
		{
			arr[j] = r.nextInt(N);
			arr[j] += mmin;
			System.out.println(arr[j] + " ");
		}
		System.out.println();
		
		for(j = 0; j < ARRNUM; j++)
		{
			SetBit(words, arr[j]);
		}
		System.out.println("排序后的a为:");
		
		for(i = 0; i < N; i++)
		{
			if(GetBit(words, i))
			{
				System.out.println(i + mmin + " ");
				count++;
			}
		}
		System.out.println();
		System.out.println("总个数为:" + count);
	}

	public static void main(String[] args)
	{
		new Test().sort();
	}
}

  

 

 

转载于:https://www.cnblogs.com/Mr24/p/6693575.html

<think>好的,我现在需要帮助用户了解Top K算法的相关概念、解决方法以及应用场景。首先,我应该回顾一下用户提供的引用内容,确保信息准确,并且正确引用。 首先,根据引用[1],TopK算法用于快速找出数据集中前K个最大或最小的元素,常见于电商和音乐应用。时间复杂度是O(nlogk),使用堆排序思想。引用[2]提到TopK的解决方案,比如全局排序,但可能效率不高,需要优化思路。引用[3]则详细说明了堆结构在TopK中的应用,特别是如何维护堆顶元素。 接下来,我需要组织回答的结构,按照用户的要求,分概念、解决方案、应用场景三个方面。每个部分要结合引用内容,并自然地添加引用标识。同时,需要确保使用正确的中文表达,数学公式用$...$或$$...$$格式,比如时间复杂度写成$O(n \log k)$。 在解决方案部分,要列出不同的方法,如全局排序、局部堆调整、快速选择算法,并比较它们的优缺点。这里需要注意引用[2]和[3]中的内容,尤其是堆的实现和优化思路。例如,堆方法的时间复杂度来自引用[1],而快速选择算法可能需要引用补充的知识,但用户提供的引用中没有提到,可能需要避免详细展开,或者仅简要提及。 应用场景部分,根据引用[1]和[2]中的例子,如电商、音乐推荐、排行榜等,需要具体说明每个场景如何应用TopK算法,并正确添加引用标记。 最后生成相关问题,确保问题TopK相关,覆盖实现细节、优化、应用场景比较等,参考示例中的问题结构。 需要检查LaTeX格式是否正确,例如时间复杂度中的log应该用斜体,即$\log$,确保所有数学表达式正确。例如,堆调整的时间复杂度是$O(n \log k)$,而不是O(nlogk)。 同时,避免使用Markdown格式,保持回答自然流畅。注意引用标识的位置,如每个引用出现在对应的解释末尾,如使用堆方法时引用[1]和[3]。 可能需要注意的地方:用户提供的引用中没有提到快速选择算法,所以这部分可能需要简要说明,但不要过于详细,或者可以指出这是另一种方法,但不在当前引用范围内。或者,可能用户希望仅基于提供的引用来回答,所以可能需要仅涵盖引用中的方法,即全局排序和堆方法,以及可能的其他方法如分治处理,但引用中没有明确提到,所以可能应避免引入外部知识。 综上所述,整理回答结构,确保每个部分正确引用,公式正确,问题相关且符合用户要求。</think>### Top K 算法详解 #### 一、核心概念 Top K 算法用于从大规模数据集中快速筛选出前$K$个最大或最小的元素,例如电商平台筛选销量最高的前10个商品,或音乐平台统计播放量前100的歌曲[^1]。其核心目标是通过优化时间复杂度(如$O(n \log K)$)避免全局排序的低效性。 #### 二、解决方案 1. **全局排序法** 将数据集完全排序后取前$K$个元素。例如对$n$个元素使用快速排序(时间复杂度$O(n \log n)$),但当$K \ll n$时效率较低[^2]。 *适用场景*:数据规模较小时。 2. **堆调整法** - **最小堆(求最大K个元素)**:维护一个容量为$K$的最小堆,遍历数据时若元素大于堆顶则替换堆顶并调整堆。时间复杂度为$O(n \log K)$[^3]。 - **最大堆(求最小K个元素)**:原理类似,但堆顶为最大值。 *代码片段*(Python实现最小堆): ```python import heapq def topk_max(arr, k): heap = [] for num in arr: if len(heap) < k: heapq.heappush(heap, num) elif num > heap[0]: heapq.heapreplace(heap, num) return heap ``` 3. **快速选择算法** 基于快速排序的分区思想,每次选取基准值将数据划分为两部分,仅在包含前$K$元素的区间递归操作。平均时间复杂度为$O(n)$,但最坏情况为$O(n^2)$。 #### 三、应用场景 1. **电商推荐**:实时更新销量Top 10商品 2. **社交平台**:计算用户粉丝数排行榜 3. **数据监控**:快速定位服务器访问量最高的IP地址 4. **金融风控**:识别交易金额异常的前K笔记录 #### 性能对比 | 方法 | 时间复杂度 | 空间复杂度 | 适用场景 | |--------------|------------------|------------|-----------------------| | 全局排序 | $O(n \log n)$ | $O(n)$ | 小规模数据 | | 堆调整 | $O(n \log K)$ | $O(K)$ | 数据流或大规模数据[^3]| | 快速选择 | $O(n)$(平均) | $O(1)$ | 允许修改原数组 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值