noip2015跳石头---二分答案

本文介绍了一种通过移除部分障碍来最大化比赛难度的算法。比赛中选手需从起点跳至终点,途经若干岩石。组织者的目标是移除一定数量的岩石使选手的最短跳跃距离最大化。文章提供了一个具体的实现方案,包括输入输出样例及核心代码。
摘要由CSDN通过智能技术生成

题目背景

一年一度的“跳石头”比赛又要开始了!

题目描述

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终 点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达 终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳 跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M 块岩石(不能 移走起点和终点的岩石)。

输入输出格式

输入格式:

输入文件名为 stone.in。

输入文件第一行包含三个整数 L,N,M,分别表示起点到终点的距离,起点和终 点之间的岩石数,以及组委会至多移走的岩石数。

接下来 N 行,每行一个整数,第 i 行的整数 Di(0 < Di < L)表示第 i 块岩石与 起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同 一个位置。

输出格式:

输出文件名为 stone.out。 输出文件只包含一个整数,即最短跳跃距离的最大值。

输入输出样例

输入样例#1:
25 5 2 
2
11
14
17 
21
输出样例#1:
4

说明

输入输出样例 1 说明:将与起点距离为 2 和 14 的两个岩石移走后,最短的跳跃距离为 4(从与起点距离 17 的岩石跳到距离 21 的岩石,或者从距离 21 的岩石跳到终点)。

另:对于 20%的数据,0 ≤ M ≤ N ≤ 10。 对于50%的数据,0 ≤ M ≤ N ≤ 100。

对于 100%的数据,0 ≤ M ≤ N ≤ 50,000,1 ≤ L ≤ 1,000,000,000。


看见最大的最小,最小的最大,切记二分查找,切记切记!


#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
ll n,m,l;
ll dis[50001];
int check(int mid)
{
 ll last=0;
 ll cnt=0;
 for(int i=1;i<=n;i++)
 {
  if(dis[i]-last<mid)cnt++;
  else last=dis[i];
 }
 if(cnt<=m)return 1;
 else return 0;
}
int main()
{
 cin>>l>>n>>m;
 for(int i=1;i<=n;i++)
 {
  cin>>dis[i];
 }
 n++;
 dis[n]=l;
 ll l,r;
 l=0;r=dis[n];
 ll ans;
 while(r-l>1)
 {
  int mid=(l+r)>>1;
  if(check(mid))l=mid;
  else r=mid;
 }
 if(check(r))ans=r;
    else ans=l;
 cout<<ans;
 return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值