压缩感知

http://hi.baidu.com/jrjian/blog/item/5cd7286290db89d6e6113a6b.html

http://hi.baidu.com/jrjian/blog/item/829a5decb63a3d3626979186.html

 

 

 

2010-01-20 10:21

重读Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,这篇文章是压缩传感的经典文章之一,今天看的是第三遍,还是吃不透,以下是自己对文章的一知半解:

1.文章告诉我们压缩传感在图像领域的发展源于作者在医学图像领域--MR图像重构得到的惊人结果,接着提出了压缩传感的数学模型,即当一信号在时域具有稀疏性的前提下,对频域进行少量样本的随机抽样,就可以对信号进行重构,作者事实上是从一个特例开始讨论的,即B1是简单的抽样基,B2是傅里叶基,到了文章的结尾,才对这一事实进行扩展,而且上来就是全变分模型,而不是抽象的L1范数最小化。

2.接着作者提出了两个问题:哪一类的信号才可以得到完美的重构,以及,重构时对采样数目的要求到底是什么,作者用定理1.3回答了以上问题,具有T稀疏性的信号,如果采样数满足。。。要求,那么信号可以得到重构,并且可以证明,重构是唯一的而且是最优的。最优性指的是,没有其他的算法可以用更少的采样数目得到这样的结果。

3.作者阐述了压缩传感与测不准原理的关系,并且提出了新的更强的准则,我到现在还是模模糊糊,没弄明白。

4。压缩传感与相关研究的联系:利用L1范数最小化来恢复稀疏信号并不是压缩传感的新创,由来已久,其外,压缩传感与信号的稀疏分解具有很深的渊源,从某种意义上说,他们是相同的,当然他们具有本质上的不同:压缩传感是从不完整的数据中恢复信号,而稀疏分解是找到信号的最稀疏最有效的表达,最后作者从信号采样的角度告诉我们文章的最大贡献是提出了一种新的信号采样方式:数目更少,随机性。

5.文章花了大部分的篇幅来证明解的唯一性,在最后,给出了算法的稳定性,鲁棒性,以及算法的扩展,信号具有T稀疏,且采样数目满足定理要求,算法是稳定的,鲁棒性在相关的文章讨论,扩展指的是信号可以在更多的基里面具有稀疏性,不局限于时域和频域,且采样矩阵也可以有更加多样的选择。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值