统计某元素或者某行(列)出现的次数

[~,~,n]=unique(A,'rows');
s=sum(bsxfun(@eq,n,unique(n)'));
统计一个矩阵A中某行或者某列出现的次数

例子:

A =[1 2;1 2;1 2;2 3;2 3;4 5;5 6;1 2;2 3;5 6;7 8];
上面命令返回结果s =[4     3     1     2     1];


unique_input = unique(input);
num = histc(input(:),unique_input);
统计一个向量中某元素出现的次数





<think>好的,用户的问题是想用Pandas计算某个具体数字在整个DataFrame的所有中出现的总次数。首先,我需要回忆一下Pandas的相关方法。用户提供的引用里有关于DataFrame的操作,比如合并、删除,但可能我需要找出所有中某个值的出现次数。 首先,DataFrame是一个二维结构,每个都是一个Series。要统计整个DataFrame中的值,可能需要遍历每个单元格。通常,可以使用df.values来获取所有值的数组,然后进行统计或者,可以使用applymap函数对每个元素应用检查。 例如,假设用户有一个DataFrame,比如引用中的例子,用户想统计数字72出现的次数。72在温度出现了两次,其他没有的话,总次数是2次。 可能的步骤是: 1. 将整个DataFrame转换为布尔矩阵,判断每个元素是否等于目标值。 2. 对所有True值求和,因为True会被视为1,False为0,所以sum()可以得到总次数。 具体来说,可以用(df == target).sum().sum()。第一个sum()统计的和,得到一个Series,第二个sum()将各的结果相加,得到总数。 比如,在引用4的例子中,温度有72出现两次,所以(df == 72).sum().sum()会返回2。 另外,需要考虑数据类型的问题,比如中是否有其他类型的数据,比如字符串,这时候比较是否会影响结果。例如,如果目标数字是字符串形式的,比如'72',而数据中是整数72,比较会失败,所以需要确保类型一致。 另外,用户可能需要处理NaN的情况,但根据问题描述,用户想统计具体数字,可能NaN不需要考虑,或者可以忽略。Pandas中,NaN不等于任何值,包括自身,所以当目标值为NaN时,需要使用isna()方法,但这里用户的问题应该是一个具体的数字,所以不需要处理这种情况。 所以,最终的解决方案应该是使用两次sum()方法,先按求和,再整体求和。示例代码如下: target = 72 count = (df == target).sum().sum() print(f"数字{target}出现的总次数为:{count}") 验证一下是否正确。在引用4的例子中,温度有两个72,其他没有,所以结果应该是2。测试应该没问题。 用户可能还关心效率问题,对于大型DataFrame,这种方法是否高效。因为要遍历每个元素,时间复杂度是O(n*m),n是行数,m是数。但对于大多数情况,这已经足够快,除非数据量极大,但这时候可能需要优化,比如转换为NumPy数组再统计,但Pandas的方法已经向量化了,应该效率不错。 总结步骤: 1. 使用df == target生成布尔DataFrame。 2. 两次sum得到总次数。</think>要统计某个具体数字在整个 Pandas DataFrame 所有中出现的总次数,可以按以下步骤操作: ### 方法说明 1. **生成布尔矩阵**:通过 `df == target` 生成与原 DataFrame 结构相同的布尔矩阵,`True` 表示对应位置的元素等于目标值,`False` 表示不等于。 2. **按求和**:使用 `.sum()` 对布尔矩阵按求和,得到每中目标值出现的次数(因为 `True` 视为 `1`,`False` 视为 `0`)。 3. **全局求和**:再次使用 `.sum()` 将各统计结果相加,得到总次数。 ### 示例代码 ```python import pandas as pd # 示例 DataFrame(来自引用[4]) df = pd.DataFrame({ '城市': ['北京', '天津', '上海', '南京', '深圳', '广州'], '温度': [20, 43, 72, 72, 26, 64], '降水': [8, 13, 14, 12, 24, 25] }) # 目标数字 target = 72 # 统计次数 total_count = (df == target).sum().sum() print(f"数字 {target} 出现的总次数为:{total_count}") ``` ### 输出结果 ``` 数字 72 出现的总次数为:2 ``` ### 注意事项 1. **数据类型一致性**:确保 DataFrame 中的数值与目标值 `target` 类型一致(例如,整数 `72` 与字符串 `'72'` 不匹配)[^2]。 2. **缺失值处理**:若 DataFrame 中存在缺失值(如 `NaN`),`df == target` 会直接返回 `False`,不影响统计结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值