题目描述
Farmer John 建造了一个有 NN(22 \le≤ NN \le≤ 100000100000) 个隔间的牛棚,这些隔间分布在一条直线上,坐标是 x_1x
1
,…,x_Nx
N
(0 \le≤ x_ix
i
\le≤ 10000000001000000000)。
他的 CC(22 \le≤ CC \le≤ NN) 头牛不满于隔间的位置分布,它们为牛棚里其他的牛的存在而愤怒。为了防止牛之间的互相打斗,Farmer John 想把这些牛安置在指定的隔间,所有牛中相邻两头的最近距离越大越好。那么,这个最大的最近距离是多少呢?
输入格式
第 11 行:两个用空格隔开的数字 NN 和 CC。
第 22 ~ N+1N+1 行:每行一个整数,表示每个隔间的坐标。
输出格式
输出只有一行,即相邻两头牛最大的最近距离。
输入输出样例
输入 #1复制
5 3
1
2
8
4
9
输出 #1复制
3
#include <bits/stdc++.h>
using namespace std;
//最小值最大问题、最大值最小问题或求最大、最小值时都可以采用二分法
long long n,c;
int a[100001];
bool check(int x)//判断最短跳跃距离是否合法
{
int x1=a[1],num=1;//第一个隔间需要放牛
for(int i=2;i<=n;i++)
{
if(a[i]-x1>=x)//如果能放下
{
num++;//又放进一头牛
x1=a[i];//更新上一头牛的位置
if(num==c)
return 1;
}
}
return 0;
}
int main()
{
cin>>n>>c;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1,a+n+1);//由题可知坐标并不是有序的,因此需要先排序
int left=0,right=1000000;//l和r为最短跳跃距离的边界
int mid;//首先假设最近距离为mid
while(left<right)
{
mid=(left+right+1)>>1;
//最优解一定是可行解,可行解未必是最优解
if(check(mid))
left=mid;//如果是可行解,就去右边继续寻找最优解
else
right=mid-1;//如果不是可行解,就去左边寻找可行解
}
cout<<right;
return 0;
}