Flume快速入门
一、Flume安装部署
1、 安装地址
1) Flume官网地址
http://flume.apache.org/
2)文档查看地址
http://flume.apache.org/FlumeUserGuide.html
3)下载地址
http://archive.apache.org/dist/flume/https://mirrors.tuna.tsinghua.edu.cn/apache/flume/1.9.0/apache-flume-1.9.0-bin.tar.gz
2、 安装部署
1)将apache-flume-1.7.0-bin.tar.gz上传到linux的/home/spark/bigdata目录下
2)解压apache-flume-1.7.0-bin.tar.gz到/home/spark/bigdata目录下
tar -zxf apache-flume-1.7.0-bin.tar.gz
3)修改apache-flume-1.7.0-bin的名称为flume
mv apache-flume-1.7.0-bin flume-1.7.0
4)将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件
mv flume-env.sh.template flume-env.sh vi flume-env.sh export JAVA_HOME=/opt/module/jdk1.8.0_144
二、Flume入门案例
1、监控端口数据官方案例
1)案例需求:
使用Flume监听一个端口,收集该端口数据,并打印到控制台。
2)需求分析:
3)实现步骤:
1.安装netcat工具
ubuntu中使用如下命令sudo apt-get install netcat
centos中使用如下命令sudo yum install nc
2.判断44444端口是否被占用
sudo netstat -tunlp | grep 44444
3.创建Flume Agent配置文件netcat-flume-logger.conf
在flume目录下创建job文件夹并进入job文件夹。
mkdir job cd job/
在job文件夹下创建Flume Agent配置文件netcat-flume-logger.conf
。
vim netcat-flume-logger.conf
在netcat-flume-logger.conf文件中添加如下内容。
添加内容如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1 a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
注:配置文件来源于官方手册http://flume.apache.org/FlumeUserGuide.html
三、开启flume监听端口
第一种写法:
bin/flume-ng agent --conf conf/ --name a1 --conf-file job/netcat-flume-logger.conf -Dflume.root.logger=INFO,console
第二种写法:
bin/flume-ng agent -c conf/ -n a1 -f job/netcat-flume-logger.conf -Dflume.root.logger=INFO,console
参数说明:
–conf/-c:表示配置文件存储在conf/目录 --name/-n:表示给agent起名为a1 --conf-file/-f:flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件。 -Dflume.root.logger=INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error。
1、使用netcat工具向本机的44444端口发送内容
nc localhost 44444 hello normal
2、在Flume监听页面观察接收数据情况
四、实时监控单个追加文件
1、案例需求:实时监控Hadoop resourcemanager的日志,第一步输出到logger当中,最后修改成上传到HDFS中
2、需求分析:
3、实现步骤:
1.Flume要想将数据输出到HDFS,必须持有Hadoop相关jar包
将commons-configuration-1.6.jar、hadoop-auth-2.7.2.jar、hadoop-common-2.7.2.jar、hadoop-hdfs-2.7.2.jar、commons-io-2.4.jar、htrace-core-3.1.0-incubating.jar
拷贝到/flume/lib文件夹下。
2.创建file-flume-hdfs.conf文件
创建文件
vim file-flume-hdfs.conf
注:要想读取Linux系统中的文件,就得按照Linux命令的规则执行命令。由于Hive日志在Linux系统中所以读取文件的类型选择:exec即execute执行的意思。表示执行Linux命令来读取文件。
简单配置:
# Name the components on this agent a1.sources = r1
a1.sinks = k1 a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command= tail -F /var/log.log
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
实验结果:
hdfs sink配置
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://spark:9000/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k2.hdfs.batchSize = 10
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 10
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k2.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2
注意:
对于所有与时间相关的转义序列,Event Header中必须存在以 “timestamp”的key(除非hdfs.useLocalTimeStamp设置为true,此方法会使用TimestampInterceptor自动添加timestamp)。
a3.sinks.k3.hdfs.useLocalTimeStamp = true
4、运行Flume
bin/flume-ng agent --conf conf/ --name a2 --conf-file job/file-flume-hdfs.conf
5、开启Hadoop和Hive并操作Hive产生日志
sbin/start-dfs.sh sbin/start-yarn.sh bin/hive hive (default)>
6、在HDFS上查看文件。
五、实时监控目录下多个新文件
1)案例需求:使用Flume监听整个目录的文件,并上传至HDFS
2)需求分析:
3)实现步骤:
1、创建配置文件flume-dir-hdfs.conf
创建一个文件
vim flume-dir-hdfs.conf
添加如下内容
a3.sources = r3
a3.sinks = k3
a3.channels = c3
# Describe/configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /opt/module/flume/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true
#忽略所有以.tmp结尾的文件,不上传
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)
# Describe the sink--- hdfs
a3.sinks.k3.type = hdfs a3.sinks.k3.hdfs.path = hdfs://hadoop102:9000/flume/upload/%Y%m%d/%H
#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true
#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1
#重新定义时间单位
a3.sinks.k3.hdfs.roundUnit = hour
#是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a3.sinks.k3.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a3.sinks.k3.hdfs.fileType = DataStream
#多久生成一个新的文件
a3.sinks.k3.hdfs.rollInterval = 60
#设置每个文件的滚动大小大概是128M
a3.sinks.k3.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a3.sinks.k3.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
2、启动监控文件夹命令
bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf
说明:在使用Spooling Directory Source时
不要在监控目录中创建并持续修改文件
上传完成的文件会以.COMPLETED结尾
被监控文件夹每500毫秒扫描一次文件变动
3、 向upload文件夹中添加文件
在/opt/module/flume目录下创建upload文件夹
mkdir upload
向upload文件夹中添加文件
touch normal.txt touch normal.tmp touch normal.log
4、查看HDFS上的数据
localhost:9000 当中查看
5、等待1s,再次查询upload文件夹
ll
总用量 0
六、实时监控目录下的多个追加文件
Exec source适用于监控一个实时追加的文件,不能实现断点续传;Spooldir Source适合用于同步新文件,但不适合对实时追加日志的文件进行监听并同步;而Taildir Source适合用于监听多个实时追加的文件,并且能够实现断点续传。
1)案例需求:使用Flume监听整个目录的实时追加文件,并上传至HDFS
2)需求分析:
3)实现步骤:
1、创建配置文件taildir-flume-hdfs.conf
创建一个文件
vim taildir-flume-hdfs.conf
添加如下内容
a3.sources = r3a3.sinks = k3a3.channels = c3 # Describe/configure the
sourcea3.sources.r3.type = TAILDIRa3.sources.r3.positionFile =
/opt/module/flume/tail_dir.jsona3.sources.r3.filegroups = f1
f2a3.sources.r3.filegroups.f1 =
/opt/module/flume/files/.*file.*a3.sources.r3.filegroups.f2 =
/opt/module/flume/files/.log. # Describe the sinka3.sinks.k3.type =
hdfsa3.sinks.k3.hdfs.path =
hdfs://hadoop102:9000/flume/upload2/%Y%m%d/%H#上传文件的前缀a3.sinks.k3.hdfs.filePrefix
= upload-#是否按照时间滚动文件夹a3.sinks.k3.hdfs.round = true#多少时间单位创建一个新的文件夹a3.sinks.k3.hdfs.roundValue =
1#重新定义时间单位a3.sinks.k3.hdfs.roundUnit =
hour#是否使用本地时间戳a3.sinks.k3.hdfs.useLocalTimeStamp =
true#积攒多少个Event才flush到HDFS一次a3.sinks.k3.hdfs.batchSize =
100#设置文件类型,可支持压缩a3.sinks.k3.hdfs.fileType =
DataStream#多久生成一个新的文件a3.sinks.k3.hdfs.rollInterval =
60#设置每个文件的滚动大小大概是128Ma3.sinks.k3.hdfs.rollSize =
134217700#文件的滚动与Event数量无关a3.sinks.k3.hdfs.rollCount = 0 # Use a
channel which buffers events in memorya3.channels.c3.type =
memorya3.channels.c3.capacity = 1000a3.channels.c3.transactionCapacity
= 100 # Bind the source and sink to the channela3.sources.r3.channels = c3a3.sinks.k3.channel = c3
2、启动监控文件夹命令
bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-taildir-hdfs.conf
3、向files文件夹中追加内容
在/opt/module/flume目录下创建files文件夹
mkdir files
向upload文件夹中添加文件echo hello >> file1.txtecho normal >> file2.txt
4、查看HDFS上的数据
5、Taildir说明:
Taildir Source维护了一个json格式的position File,其会定期的往position File中更新每个文件读取到的最新的位置,因此能够实现断点续传。Position File的格式如下:
{“inode”:2496272,“pos”:12,“file”:“/opt/module/flume/files/file1.txt”}
{“inode”:2496275,“pos”:12,“file”:“/opt/module/flume/files/file2.txt”}
注:Linux中储存文件元数据的区域就叫做inode,每个inode都有一个号码,操作系统用inode号码来识别不同的文件,Unix/Linux系统内部不使用文件名,而使用inode号码来识别文件。