通关就会了Python?

想学好编程其实不难,就是多思考多练,多写代码!但是都说编程很枯燥、无味,玩游戏很开心、很快乐。如果用玩游戏“过关”、“练级” 的方式来学习编程的话,可能会更加有意思,能为我们学习编程提升动力和自豪感。

今天就来给给大家推荐一些Python的编程挑战和练习题,让学习python更轻松和快乐。

注意:难易程度依次由低到高向大家介绍!

1、PythonTip

http://www.pythontip.com/coding/code_oj

一个中文网站,里面的练习题要偏Python基础算法,非常适合新手的入门练习。练习题还标明了难易程度,可自行选择合适的难度。

不仅有练习题,同时还会有网友分享的解题报告,以及可以交流讨论。不会的时候,可以参考一下别人的思路。
 

2、Codecombat

https://codecombat.cn/play

CodeCombat 是一款网页编程游戏。当你打开 CodeCombat 网站,外观看起来就像是一个魔兽争霸风格的线上游戏,而且当你实际玩玩看,你会发现过程真的就是英雄要去打怪、寻宝与解谜,只是搭配了程序语言的学习。

所需要使用的语言代码也是循序渐进,完全没有基础的同学也都能看明白,还是蛮有趣的!


CodeCombat 能够学习 Python、JavaScript等不同程序语言,这些语言能够运用到游戏设计、网页应用、App 的开发上。

3、Human Resource Machine(人力资源机器)

官方网址:http://www.tomorrowcorporation.com

Human Resource Machine 是一款非常有意思的游戏。

玩家将扮演一个从基层做起的员工,需要通过指令代码来编写一条条程序,完成每个阶段的解决老板布置的问题。一旦你成功了,恭喜!你升职了!你获得了去往公司更高一层做一年苦力的权利!


就算你以前从没写过程序也不用担心,写程序就像玩解谜游戏一样,你不去管那些0和1, 还有那些吓人的奇怪符号。

这款游戏界面十分有意思,画风清奇,任务具有较大的挑战性,适合有一定编程基础或者年龄稍大的孩子玩。

游戏有pc端和移动端的app,官方版本需要付费,不过网上已经有免费的版本。

4、Python Challenge

http://www.pythonchallenge.com


这是一个使用python进行挑战过关的网站,一共有33道题,每题都有一定的提示。闯关需要有一定的python基础。有些题目不仅仅需要python,还需要细致的观察和思考。

下面这张图是这个网站第 0 关的题目,谜面是一幅图,上面有数字:2的38次方,提示是:试着更改一下url地址。你想到了什么没有?


 

### 使用Python编写自动化蜘蛛纸牌游戏解决方案 为了实现自动玩通蜘蛛纸牌的目标,可以从构建一个基于规则的AI入手。此过程涉及几个关键技术组件: #### 1. 游戏状态表示 首先需要定义一种方法来描述当前的游戏局面。这通常涉及到记录每列中的卡片位置及其可见性。 ```python class GameState: def __init__(self, columns): self.columns = columns # 存储每一列的状态 def is_game_over(self): """判断游戏是否结束""" pass def get_legal_moves(self): """获取合法移动列表""" pass ``` #### 2. 移动生成器 接着要有一个函数能够识别所有可能的有效动作。这些动作应该遵循标准的蜘蛛纸牌规则[^1]。 ```python def generate_possible_moves(state): moves = [] for i in range(len(state.columns)): column_i = state.columns[i] if not column_i or column_i[-1].rank != 'K': continue for j in range(len(state.columns)): if i == j: continue column_j = state.columns[j] if not column_j or can_stack(column_i[-1], column_j[-1]): moves.append((i,j)) return moves ``` #### 3. AI决策机制 采用简单的贪心策略或其他启发式搜索算法(如A*)来进行下一步的选择。这里假设存在`evaluate_move()`用于评估某个特定行动的价值。 ```python from heapq import heappush, heappop def choose_best_move(moves, current_state): heap = [] for move in moves: new_state = apply_move(current_state.copy(), move) score = evaluate_move(new_state) heappush(heap, (-score, move)) _, best_move = heappop(heap) if heap else None return best_move ``` #### 4. 执行循环 最后设置主循环,在每次迭代中应用上述逻辑直到找到解法或确认无路可走为止。 ```python while not game.is_game_over(): legal_moves = game.get_legal_moves() chosen_move = choose_best_move(legal_moves, game) if chosen_move is None: break # No more valid moves available. game.apply(chosen_move) ``` 这种方法虽然简单却能有效地模拟人类玩家思考的过程,并尝试找出通往胜利的道路。当然实际操作起来还需要考虑更多细节优化,比如处理特殊情况下的分支预测等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李威威wiwi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值