数据挖掘&机器学习
965攻城狮
这个作者很懒,什么都没留下…
展开
-
支持向量机SVM推导过程
原创 2014-05-09 21:24:21 · 499 阅读 · 0 评论 -
DDA算法和Bresenham算法
作者:朱金灿来源:http://blog.csdn.net/clever101/ DDA算法和Bresenham算法是计算机图形学中绘制直线的两种常用算法。本文具体介绍一下DDA算法和Bresenham算法实现的具体思路。DDA算法主要是根据直线公式y = kx + b来推导出来的,其关键之处在于如何设定单位步进,即一个方向的步进为单位步进,另一个方向的步进必然是小于1。转载 2014-05-25 19:52:21 · 1784 阅读 · 0 评论 -
提高分类准确率的技术
1.装袋2.提升和AdaBoost3.suij原创 2014-06-08 15:52:52 · 3521 阅读 · 0 评论 -
SVM入门(九)松弛变量(续)惩罚因子解决训练集比例不均衡问题
接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C。回头看一眼引入了松弛变量以后的优化问题:注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们)。这个式子是以前做SVM的人写的,大家也就这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用转载 2014-05-11 20:45:17 · 1344 阅读 · 1 评论 -
SVM入门(十)将SVM用于多类分类
从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别。如何由两类分类器得到多类分类器,就是一个值得研究的问题。还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多转载 2014-05-11 21:28:47 · 592 阅读 · 0 评论 -
SVM入门(八)松弛变量
现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的。就像下图这样: 圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数量嘛,当然很大了)。现在想象我们有另一个训练集,只比原先这个训练集多了一篇文章,映射到高维空间以后(当然,也使用了相同的核函数),也就多了一个样本点,但是这个样本的位置是这样的: 就是图中黄色那个点,它是方转载 2014-05-11 20:01:23 · 503 阅读 · 0 评论 -
文本分类入门(十一)特征选择方法之信息增益
前文提到过,除了开方检验(CHI)以外,信息增益(IG,Information Gain)也是很有效的特征选择方法。但凡是特征选择,总是在将特征的重要程度量化之后再进行选择,而如何量化特征的重要性,就成了各种方法间最大的不同。开方检验中使用特征与类别间的关联性来进行这个量化,关联性越强,特征得分越高,该特征越应该被保留。在信息增益中,重要性的衡量标准就是看特征能够为分类系统带来多少信息,带转载 2014-05-11 21:36:06 · 879 阅读 · 0 评论 -
SVM入门(七)为何需要核函数
生存?还是毁灭?——哈姆雷特 可分?还是不可分?——支持向量机 之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理。如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使得它的适用范围大大缩小,而它的很多优点我们实在不原意放弃,怎么办呢?是否有某种方法,让线性不可分的数据变得线性可分呢?有!其思想说来也简单转载 2014-05-11 19:41:53 · 296 阅读 · 0 评论 -
SVM入门(六)线性分类器的求解——问题的转化,直观角度
让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图, 圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例。我们想求得这样一个线性函数(在n维空间中的线性函数): g(x)=wx+b 使得所有属于正类的点x+代入以后有g(x+)≥1,而所有属于负类的点x-代入后有g(x-)≤-1(之所转载 2014-05-11 15:45:36 · 397 阅读 · 0 评论 -
SVM入门(五)线性分类器的求解——问题的描述Part2
从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示:(式1)约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束。关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维转载 2014-05-11 15:39:13 · 369 阅读 · 0 评论 -
SVM入门(四)线性分类器的求解——问题的描述Part1
上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?回头再看看我们对间隔和几何间隔的定义:间隔:δ=y(wx+b)=|g(x)| 几何间隔: 可以看出δ=||w||δ几何。注意到几何间隔与||w||是成反比的,因此最大转载 2014-05-11 15:27:28 · 454 阅读 · 0 评论 -
SVM入门(一)至(三)Refresh
按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅.(一)SVM的八股简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC 维理论和结转载 2014-05-11 15:18:41 · 382 阅读 · 0 评论 -
svm(一):libsvm简介
SVM 的输入文件格式.[label] [index1]:[value1] [index2]:[value2] ...[label] [index1]:[value1] [index2]:[value2] ...一行一条记录数据,如:+1 1:0.708 2:1 3:1 4:-0.320 5:-0.105 6:-1label或说是class,转载 2014-05-10 21:36:58 · 813 阅读 · 0 评论 -
神经网络编程入门
转载自http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集转载 2015-05-19 21:16:15 · 630 阅读 · 0 评论