- 博客(7)
- 收藏
- 关注
原创 poj 2355
题目链接点击打开链接简单的动态规划,因为忽略考虑起始站的编号不一定比终止站的标号小,浪费了半小时#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> using namespace std; int L1,L2,L3,C1,C2,C3; int mmin(...
2018-05-24 17:39:40 215
原创 poj 4150上机
描述又到周末了,同学们陆陆续续开开心心的来到机房上机。jbr也不例外,但是他到的有点晚,发现有些机位上已经有同学正在做题,有些机位还空着。细心的jbr发现,一位同学来到机房,坐在机位i上,如果他的左右两边都空着,他将获得能力值a[i];如果当他坐下时,左边或者右边已经有一个人在上机了,他将获得能力值b[i];如果当他坐下时,他的左边右边都有人在上机,他将获得能力值c[i]。同时他发现,已经在上机的...
2018-05-23 01:30:20 1073 1
原创 poj 4151电影节
描述大学生电影节在北大举办! 这天,在北大各地放了多部电影,给定每部电影的放映时间区间,区间重叠的电影不可能同时看(端点可以重合),问李雷最多可以看多少部电影。输入多组数据。每组数据开头是n(n<=100),表示共n场电影。接下来n行,每行两个整数(0到1000之间),表示一场电影的放映区间n=0则数据结束输出对每组数据输出最多能看几部电影样例输入8 3 4 0 7 3 8 15 19 ...
2018-05-23 01:06:14 566
原创 BatchNormalization解释
参考网址:点击打开链接一、为什么要使用BatchNormalization?在深度网络的训练过程中,只要网络的前几层发生微小的变化,就会在后面网络的累积放大下去。一旦网络的某一层的输入数据的分布发生了变化,那么这层网络就需要去适应这个新的数据分布,所以训练过程中,如果训练数据一直在发生改变的话,就会使网络的训练速度很慢。为了解决这个问题就可以使用BatchNormalization算法。二、Bat...
2018-04-16 20:49:14 683
转载 卷积神经网络里的复杂度计算
时间复杂度:某个层:整个网络:空间复杂度:K指的是卷积核的尺寸,C代表的是通道数。以后在看网络结构的时候可以多思考每次进行卷积的kernel size的设置的目的是什么学习网址点击打开链接...
2018-04-13 15:22:54 3127
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人